冰川冻土 ›› 2021, Vol. 43 ›› Issue (5): 1365-1382.doi: 10.7522/j.issn.1000-0240.2021.0090
王蓝翔1,3(),董慧科1(
),龚平1,2,王传飞1,2,吴晓东4
收稿日期:
2020-08-01
修回日期:
2020-11-26
出版日期:
2021-10-31
发布日期:
2021-12-09
通讯作者:
董慧科
E-mail:wanglx@itpcas.ac.cn;donghuike@itpcas.ac.cn
作者简介:
王蓝翔,硕士研究生,主要从事青藏高原环境污染研究. E-mail: 基金资助:
Lanxiang WANG1,3(),Huike DONG1(
),Ping GONG1,2,Chuanfei WANG1,2,Xiaodong WU4
Received:
2020-08-01
Revised:
2020-11-26
Online:
2021-10-31
Published:
2021-12-09
Contact:
Huike DONG
E-mail:wanglx@itpcas.ac.cn;donghuike@itpcas.ac.cn
摘要:
多年冻土储存了大量的有机碳、氮素以及持久性有机污染物和汞等污染物。全球变暖背景下,目前全球大部分的多年冻土都处于退化状态。多年冻土区土壤温度升高、多年冻土层解冻后,土壤温度水分会发生变化,从而改变微生物的生长代谢过程,进而改变多年冻土区的物质循环。通过综述多年冻土区的碳、氮及污染物的储量及其在多年冻土退化下的迁移转化及输出特征,研究发现:多年冻土退化增加活动层厚度、形成热喀斯特地貌,一方面导致碳基和氮基温室气体快速释放到大气中,另一方面也向水生系统中输出溶解性碳氮组分及可溶性污染物,这些过程会导致多年冻土由碳、氮和污染物储存的“汇”转变为“源”,并最终影响全球生物地球化学循环。明确多年冻土区碳、氮和污染物的生物地球化学循环过程对于全面理解气候变化对自然和人类社会系统的影响具有重要作用。未来研究中,还需要结合多学科技术手段,开展多年冻土退化过程、水文过程与生物化学循环过程的系统集成研究,此外,还需加强汞、POPs等污染物的二次释放过程与碳氮循环的耦合关系研究,定量多年冻土中污染物二次释放的环境效应,以深刻认识多年冻土中物质循环过程并为气候和环境变化提供预测依据。
中图分类号:
王蓝翔,董慧科,龚平,王传飞,吴晓东. 多年冻土退化下碳、氮和污染物循环研究进展[J]. 冰川冻土, 2021, 43(5): 1365-1382.
Lanxiang WANG,Huike DONG,Ping GONG,Chuanfei WANG,Xiaodong WU. Cycling of carbon, nitrogen and pollutants under permafrost degradation: a review[J]. Journal of Glaciology and Geocryology, 2021, 43(5): 1365-1382.
表1
多年冻土中的碳氮储量"
区域 | 类型 | 取样层 | 储量/Pg | 参考文献 | |
---|---|---|---|---|---|
有机碳储量 | 环北极地区 | 北极多年冻土 | 0~1 m | 191.8 | [ |
0~0.3 m | 119 | [ | |||
0~1 m | 268 | ||||
北极多年冻土 | 0~0.3 m | 191.29 | [ | ||
0~1 m | 495.8 | ||||
0~3 m | 1 024 | ||||
环北极Yedoma | 3 m以下 | 327~466 | |||
北极河流三角洲 | 3 m以下 | 241 | |||
西伯利亚东北部 | 0~1.1 m | 31.2±15.2 | [ | ||
北极多年冻土 | 0-0.3 m | 217±12 | [ | ||
0~1 m | 472±27 | ||||
0~3 m | 1 035±150 | ||||
环北极Yedoma | 3 m以下 | 181±54 | |||
北极河流三角洲 | 3 m以下 | 91±52 | |||
泥炭多年冻土 | 415±150 | [ | |||
青藏高原 | 多年冻土 | 0~1 m | 17.3±5.3 | [ | |
1~2 m | 10.6±2.7 | ||||
2~3 m | 5.1±1.4 | ||||
3~25 m | 127.2±37.3 | ||||
0~3 m | 37 | [ | |||
0~2 m | 17.7 | [ | |||
0~0.75 m | 33.5 | [ | |||
0~0.3 m | 10.5 | [ | |||
总氮储量 | 环北极 | 泥炭多年冻土 | 10±7 | [ | |
泥炭多年冻土 | 9.7 | [ | |||
青藏高原 | 多年冻土 | 0~3 m | 1.8 | [ | |
多年冻土 | 0~2 m | 1.72 | [ |
表2
多年冻土区土壤温室气体排放量的实验模拟结果"
类型 | 研究区域 | SOC或TN含量 | 实验温度/℃ | Q10 | 氧气条件 | 温室气体排放量 | 参考文献 |
---|---|---|---|---|---|---|---|
CO2 | 西伯利亚苔原 | 5%~11% SOC | 4 | - | 有氧 | 3.5~15 mg C-CO2·g C·(60days)-1 | [ |
阿拉斯加苔原 | 1%~16% SOC | 15 | - | 有氧 | 1~3.5 mg C-CO2·g C·(500days)-1 | [ | |
中国北部泥炭 | 22%~41% SOC | 5、15 | 2 | 有氧 | 0.5~8 mg C-CO2·kg soil·h-1 | [ | |
青藏高原湿草甸 | 4%~12% SOC | 5 | - | 有氧 | 0.25~2 mg C-CO2·g C·(7days)-1 | [ | |
青藏高原北部草甸及湿草甸 | 0.3%~11% SOC | -2、5、10 | 1.67~4.15 | 有氧 | 0.22~6.6 mg C-CO2·g C·(35days)-1 | [ | |
西伯利亚岛屿 | 0.58%~12.4% SOC | 4 | - | 有氧 | (113±58) g?CO2-C·kg C·(7years)-1 | [ | |
西伯利亚岛屿 | 0.58%~12.4% SOC | 4 | - | 有氧 | (1.3±0.8) mg CO2-C·g C·(1200days)-1 | [ | |
哈德逊湾低地泥炭 | 4、14 | 2 | 无氧 | 649.89~2 014.16 μg C·g·(225days)-1 | [ | ||
CH4 | 西伯利亚苔原 | 5%~11% SOC | 4 | - | 无氧 | 0.05~0.3 g C-CH4·g C·(60days)-1 | [ |
阿拉斯加苔原 | 1%~16% SOC | 15 | - | 无氧 | 0.0007~0.58 mg C-CH4·g soil·(500days)-1 | [ | |
青藏高原北部草甸及湿草甸 | 0.3%~11% SOC | -2、5、10 | 5.22~10.85 | 无氧 | 0.14~5.88 μg C-CH4·g C·(35days)-1 | [ | |
西伯利亚岛屿 | 0.58%~12.4% SOC | 4 | - | 无氧 | (241±138)?g CO2-C·kg C·(7years)-1 | [ | |
西伯利亚岛屿 | 0.58%~12.4% SOC | 4 | - | 无氧 | (0.25±0.13) mg CO2-C·g C·(1200days )-1 | [ | |
哈德逊湾低地泥炭 | 4、14 | 21~93 | 无氧 | 2.32~610.56 μg C·g·(225days)-1 | [ | ||
N2O | 格陵兰岛湿地 | 0.05%~0.2% TN | 3.4~6.1 | 有氧 | 1~6 ug N-N2O·kg soil·h-1 | [ | |
中国北部泥炭 | 1.4%~1.9% TN | 5、15 | 2.2 | 有氧 | 0.05~1.5 μg N-N2O·kg soil·h-1 | [ | |
青藏高原北部草甸及湿草甸 | 0.02%~1.5% TN | -2、5、10 | 3.26~5.6 | 有氧 | 0.003~1.35 mg N-N2O·g N·(35days)-1 | [ |
1 | IPCC. Climate change 2013: the physical science basis: Working Group I contribution to the Fifth assessment report of the Intergovernmental Panel on Climate Change[M]. Cambridge University Press, 2014. |
2 | Mu C, Zhang T, Wu Q, et al. Editorial: Organic carbon pools in permafrost regions on the Qinghai-Xizang (Tibetan) Plateau[J]. Cryosphere, 2015, 9(2): 479-486. |
3 | Koven C D, Riley W J, Stern A. Analysis of Permafrost Thermal Dynamics and Response to Climate Change in the CMIP5 Earth System Models[J]. Journal of Climate, 2013, 26(6): 1877-1900. |
4 | Guo D, Wang H, Li D. A projection of permafrost degradation on the Tibetan Plateau during the 21st century[J]. Journal of Geophysical Research: Atmospheres, 2012, 117(D5): D05106. |
5 | Peng X, Zhang T, Frauenfeld O W, et al. Spatiotemporal Changes in Active Layer Thickness under Contemporary and Projected Climate in the Northern Hemisphere[J]. Journal of Climate, 2018, 31(1): 251-266. |
6 | Mcclelland J W, Holmes R M, Peterson B J, et al. Increasing river discharge in the Eurasian Arctic: consideration of dams, permafrost thaw, and fires as potential agents of change[J]. Journal of Geophysical Research-Atmospheres, 2004, 109(D18): D18102. |
7 | Schuur E A G, Bockheim J G, Canadell J G, et al. Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle[J]. BioScience, 2008, 58(8): 701-714. |
8 | Beermann F, Langer M, Wetterich S, et al. Permafrost thaw and liberation of inorganic nitrogen in Eastern Siberia[J]. Permafrost and Periglacial Processes, 2017, 28(4): 605-618. |
9 | Wania F, Westgate J N. On the mechanism of mountain cold-trapping of organic chemicals[J]. Environmental Science & Technology, 2008, 42(24): 9092-9098. |
10 | He R, Jin H. Permafrost and cold-region environmental problems of the oil product pipeline from Golmud to Lhasa on the Qinghai-Tibet Plateau and their mitigation[J]. Cold Regions Science and Technology, 2010, 64(3): 279-288. |
11 | Bhardwaj L, Chauhan A, Ranjan A, et al. Persistent organic pollutants in biotic and abiotic components of Antarctic pristine environment[J]. Earth Systems & Environment, 2018, 2(7): 35-54. |
12 | Schuster P F, Schaefer K, Aiken G R, et al. Permafrost stores a globally significant amount of mercury[J]. Geophysical Research Letters, 2018, 45(3): 1463-1471. |
13 | Ma X, Liu G, Wu X, et al. Influence of land cover on riverine dissolved organic carbon concentrations and export in the Three Rivers Headwater Region of the Qinghai-Tibetan Plateau[J]. Science of The Total Environment, 2018, 630: 314-322. |
14 | Abbott B W, Jones J B. Permafrost collapse alters soil carbon stocks, respiration, CH4, and N2O in upland tundra[J]. Global Change Biology, 2015, 21(12): 4570-4587. |
15 | Natali S M, Schuur E A G, Rubin R L. Increased plant productivity in Alaskan tundra as a result of experimental warming of soil and permafrost[J]. Journal of Ecology, 2012, 100(2): 488-498. |
16 | Salmon V G, Soucy P, Mauritz M, et al. Nitrogen availability increases in a tundra ecosystem during five years of experimental permafrost thaw[J]. Global Change Biology, 2016, 22(5): 1927-1941. |
17 | Hobbie S E, Schimel J P, Trumbore S E, et al. Controls over carbon storage and turnover in high‐latitude soils[J]. Global Change Biology, 2000, 6(S1): 196-210. |
18 | Frey K E, Smith L C. Amplified carbon release from vast West Siberian peatlands by 2100[J]. Geophysical Research Letters, 2005, 32(9). |
19 | Bockheim J G, Munroe J S. Organic carbon pools and genesis of alpine soils with permafrost: a review[J]. Arctic Antarctic and Alpine Research, 2014, 46(4): 987-1006. |
20 | Davidson E A, Janssens I A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change[J]. Nature, 2006, 440(7081): 165-173. |
21 | Schuur E A G, Mack M C. Ecological response to permafrost thaw and consequences for local and global ecosystem services[J]. Annual Review of Ecology, Evolution, and Systematics, 2018, 49: 279-301. |
22 | Van Huissteden J, Dolman A J. Soil carbon in the Arctic and the permafrost carbon feedback[J]. Current Opinion in Environmental Sustainability, 2012, 4(5): 545-551. |
23 | Ma Qiang, Jin Huijun. Impacts of climate warming on soil organic carbon pools in permafrost regions[J]. Journal of Glaciology and Geocryology, 2020, 42(1): 91-103. |
马蔷, 金会军. 气候变暖对多年冻土区土壤有机碳库的影响[J]. 冰川冻土, 2020, 42(1): 91-103. | |
24 | Ni Jie, Wu Tonghua, Zhao Lin, et al. Carbon cycle in circum-Arctic permafrost regions: progress and prospects[J]. Journal of Glaciology and Geocryology, 2019, 41(4): 845-857. |
倪杰, 吴通华, 赵林, 等. 环北极多年冻土区碳循环研究进展与展望[J]. 冰川冻土, 2019, 41(4): 845-857. | |
25 | Anna-Maria V, Tarmo V, Aleksi L, et al. The current state of CO2 flux chamber studies in the Arctic tundra[J]. Progress in Physical Geography, 2018, 42(2): 162-184. |
26 | Chen H, Zhu Q, Peng C, et al. The impacts of climate change and human activities on biogeochemical cycles on the Qinghai‐Tibetan Plateau[J]. Global Change Biology, 2013, 19(10): 2940-2955. |
27 | Kim D G, Vargas R, Bond-Lamberty B, et al. Effects of soil rewetting and thawing on soil gas fluxes: a review of current literature and suggestions for future research[J]. Biogeosciences, 2012, 9(7): 2459-2483. |
28 | Dong Xingfeng, Chen Qiang, Li Hhao, et al. Effects of climate change on permafrost greenhouse gas flux in alpine region of China[J]. Soils and Crops, 2019, 8(2): 178-185. |
董星丰, 陈强, 李浩, 等. 全球气候变化对我国高寒地区冻土温室气体通量的影响[J]. 土壤与作物, 2019, 8(2): 178-185. | |
29 | Jin Huijun, Cheng Guodong. Methane emissions in permafrost regions[J]. Advance in Earth Sciences, 1997, 12(3): 276-283. |
金会军, 程国栋. 冻土区甲烷排放研究进展[J]. 地球科学进展, 1997, 12(3): 276-283. | |
30 | Sun Xiaoxin, Song Changchun, Wang Xianwei, et al. Effect of permafrost degradation on methane emission in wetlands: a review[J]. Acta Ecologica Sinica, 2011, 31(18): 5379-5386. |
孙晓新, 宋长春, 王宪伟, 等. 多年冻土退化对湿地甲烷排放的影响研究进展[J]. 生态学报, 2011, 31(18): 5379-5386. | |
31 | Kwon M J, Jung J Y, Tripathi B M, et al. Dynamics of microbial communities and CO2 and CH4 fluxes in the tundra ecosystems of the changing Arctic[J]. Journal of Microbiology, 2019, 57(5): 325-336. |
32 | Ma Q, Jin H, Yu C, et al. Dissolved organic carbon in permafrost regions: a review[J]. Science China: Earth Sciences, 2019, 62(2): 349-364. |
33 | An Zhihong, Sun Ziyong, Hu Yalu, et al. Export of dissolved organic carbon in streams draining permafrost-dominated areas: a review[J]. Geological Science and Techonology Information, 2018, 37(1): 204-211. |
安志宏, 孙自永, 胡雅璐, 等. 多年冻土区河流溶解性有机碳输出的研究进[J]. 地质科技情报, 2018, 37(1): 204-211. | |
34 | Brown J, Romanovsky V E. Report from the international permafrost association: state of permafrost in the first decade of the 21st century[J]. Permafrost and Periglacial Processes, 2008, 19(2): 255-260. |
35 | Wu X, Zhao L, Hu G, et al. Permafrost and land cover as controlling factors for light fraction organic matter on the southern Qinghai-Tibetan Plateau[J]. Science of the Total Environment, 2018, 613: 1165-1174. |
36 | Shmelev D, Veremeeva A, Kraev G, et al. Estimation and sensitivity of carbon storage in permafrost of north-eastern Yakutia[J]. Permafrost and Periglacial Processes, 2017, 28(2): 379-390. |
37 | Ping C L, Jastrow J D, Jorgenson M T, et al. Permafrost soils and carbon cycling[J]. Soil Discussions, 2015, 1(1): 147-171. |
38 | Hugelius G, Strauss J, Zubrzycki S, et al. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps[J]. Biogeosciences, 2014, 11(23): 6573-6593. |
39 | Tarnocai C, Canadell J G, Schuur E A G, et al. Soil organic carbon pools in the northern circumpolar permafrost region[J]. Global Biogeochemical Cycles, 2009, 23(2): 1-11. |
40 | Mu C, Zhang T, Wu Q, et al. Organic carbon pools in permafrost regions on the Qinghai-Xizang (Tibetan) Plateau[J]. The Cryosphere, 2015, 9(2): 479-486. |
41 | Ding J, Wang T, Piao S, et al. The paleoclimatic footprint in the soil carbon stock of the Tibetan permafrost region[J]. Nature Communications, 2019, 10(1): 4195. |
42 | Kalembasa S J, Jenkinson D S. A comparative study of titrimetric and gravimetric methods for the determination of organic carbon in soil[J]. Journal of the Science of Food and Agriculture, 1973, 24(9): 1085-1090. |
43 | Loisel J, Yu Z, Beilman D W, et al. A Database and synthesis of northern peatland soil properties and holocene carbon and nitrogen accumulation[J]. The Holocene, 2014, 24(9): 1028-1042. |
44 | Kou D, Ding J, Li F, et al. Spatially-explicit estimate of soil nitrogen stock and its implication for land model across Tibetan alpine permafrost region[J]. Science of The Total Environment, 2019, 650: 1795-1804. |
45 | Post W M, Emanuel W R, Zinke P J, et al. Soil carbon pools and world life zones[J]. Nature, 1982, 298(5870): 156-159. |
46 | Tarnocai C, Kimble J, Broll G. Determining carbon stocks in cryosols using the northern and mid latitudes soil database[J]. Swets and Zeitlinger, Lisse, 2003: 1129-1134. |
47 | Hugelius G, Loisel J, Chadburn S, et al. Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw[J]. Proceedings of the National Academy of Sciences, 2020, 117(34): 20438-20446. |
48 | Ding J, Wang T, Piao S, et al. The paleoclimatic footprint in the soil carbon stock of the Tibetan permafrost region[J]. Nature communications, 2019, 10(1): 1-9. |
49 | Zhao L, Wu X, Wang Z, et al. Soil organic carbon and total nitrogen pools in permafrost zones of the Qinghai-Tibetan Plateau[J]. Scientific Reports, 2018, 8(1): 1-9. |
50 | Wang G X, Qian J, Cheng G D, et al. Soil organic carbon pool of grassland soils on the Qinghai-Tibetan Plateau and its global implication[J]. Science of the Total Environment, 2002, 291(1): 207-217. |
51 | Yang Y, Fang J, Tang Y, et al. Storage, patterns and controls of soil organic carbon in the Tibetan grasslands[J]. Global Change Biology, 2008, 14(7): 1592-1599. |
52 | Kou D, Ding J, Li F, et al. Spatially-explicit estimate of soil nitrogen stock and its implication for land model across Tibetan alpine permafrost region[J]. Science of The Total Environment, 2019, 650: 1795-1804. |
53 | Beyer A, Mackay D, Matthies M, et al. Assessing long-range transport potential of persistent organic pollutants[J]. Environmental Science & Technology, 2000, 34(4): 699-703. |
54 | Beyer A, Matthies M. Long-Range transport potential of semivolatile organic chemicals in coupled air-water systems[J]. Environmental Science and Pollution Research, 2001, 8(3): 173-179. |
55 | Genualdi S, Killin R K, Woods J, et al. Trans-Pacific and regional atmospheric transport of polycyclic aromatic hydrocarbons and pesticides in biomass burning emissions to western North America[J]. Environmental Science & Technology, 2009, 43(4): 1061-1066. |
56 | Cabrerizo A, Dachs J, Barcelo D, et al. Influence of organic matter content and human activities on the occurrence of organic pollutants in Antarctic soils, lichens, grass, and mosses[J]. Environmental Science & Technology, 2012, 46(3): 1396-1405. |
57 | Negoita T G, Covaci A, Gheorghe A, et al. Distribution of polychlorinated biphenyls (PCBs) and organochlorine pesticides in soils from the East Antarctic coast[J]. Journal of Environmental Monitoring, 2003, 5(2): 281-286. |
58 | Park H J, Lee S, Kim M, et al. Polychlorinated biphenyl congeners in soils and lichens from King George Island, South Shetland Islands, Antarctica[J]. Antarctic Science, 2010, 22(1): 31-38. |
59 | Wang Z, Na G, Ma X, et al. Characterizing the distribution of selected PBDEs in soil, moss and reindeer dung at Ny-Ålesund of the Arctic[J]. Chemosphere, 2015, 137: 9-13. |
60 | Wang Z, Ma X, Na G, et al. Correlations between physicochemical properties of PAHs and their distribution in soil, moss and reindeer dung at Ny-Ålesund of the Arctic[J]. Environmental Pollution, 2009, 157(11): 3132-3136. |
61 | Fu S, Chu S G, Xu X. Organochlorine pesticide residue in soils from Tibet, China[J]. Bulletin of Environmental Contamination and Toxicology, 2001, 66(2): 171-177. |
62 | Tao S, Wang W, Liu W, et al. Polycyclic aromatic hydrocarbons and organochlorine pesticides in surface soils from the Qinghai-Tibetan Plateau[J]. Journal of Environmental Monitoring, 2011, 13(1): 175-181. |
63 | Tao Y, Lei G, Xue B, et al. Deposition and regional distribution of HCHs and p,p′-DDX in the western and southern Tibetan Plateau: records from a lake sediment core and the surface soils[J]. Environmental Science and Pollution Research, 2014, 21(3): 1875-1883. |
64 | Curtosi A, Pelletier E, Vodopivez C, et al. Polycyclic aromatic hydrocarbons in soil and surface marine sediment near Jubany Station (Antarctica). Role of permafrost as a low-permeability barrier[J]. Science of The Total Environment, 2007, 383(1): 193-204. |
65 | Zhao Hongyun. Study on the cumilative law of polycyclic aromatic hydrocarbons (PAHs) in high-latitude permafrost[D]. Harbin: Heilongjiang University, 2018. |
赵鸿云. 高纬度多年冻土中多环芳烃(PAHs)累积规律研究[D]. 哈尔滨: 黑龙江大学, 2018. | |
66 | Liu Shan. Study of the residual characteristics of typical organochlorine pesticides (OCPs) in high-latitude permafrost[D]. Harbin: Heilongjiang University, 2018. |
刘珊. 高纬度多年冻土中典型有机氯农药(OCPs)残留特征研究[D]. 哈尔滨: 黑龙江大学, 2018. | |
67 | Joint Information Center (JIC). Unified command arrives at spill volume estimate[R]. Unified Command Joint Information Center, Alaska Department of Environmental Conservation, Juneau, Alaska, 2006. |
68 | Barnes D L, Chuvilin E. Migration of petroleum in permafrost-affected regions[M]//Permafrost soils. Springer, Berlin, Heidelberg, 2009: 263-278. |
69 | Zhang Lei, Zhang Di, Qiao Xingguo, et al. Review of research progress on migration and transformation of petroleum pollutantsunder seasonal frozen soil conditions[J]. Environmental Protection Science, 2019, 45(3): 107-121. |
张雷, 张帝, 谯兴国, 等. 石油类污染物在季节性冻土中迁移转化规律研究[J]. 环境保护科学, 2019, 45(3): 107-121. | |
70 | Li Xingbai. Experimental study on migration of oil contaminants in permafrost regions[D]. Lanzhou: Lanzhou University of Technology, 2012. |
李兴柏. 多年冻土区石油污染物迁移试验研究[D]. 兰州: 兰州理工大学, 2012. | |
71 | Obrist D, Agnan Y, Jiskra M, et al. Tundra uptake of atmospheric elemental mercury drives Arctic mercury pollution[J]. Nature, 2017, 547(7662): 201-204. |
72 | Gu J, Pang Q, Ding J, et al. The driving factors of mercury storage in the Tibetan grassland soils underlain by permafrost[J]. Environmental Pollution, 2020, 265: 115079. |
73 | Mu C, Schuster P F, Abbott B W, et al. Permafrost degradation enhances the risk of mercury release on Qinghai-Tibetan Plateau[J]. Science of the Total Environment, 2020, 708: 135127. |
74 | Sun S, Kang S, Huang J, et al. Distribution and variation of mercury in frozen soils of a high-altitude permafrost region on the northeastern margin of the Tibetan Plateau[J]. Environmental Science and Pollution Research, 2017, 24(17): 15078-15088. |
75 | Halbach K, Mikkelsen O, Berg T, et al. The presence of mercury and other trace metals in surface soils in the Norwegian Arctic[J]. Chemosphere, 2017, 188: 567-574. |
76 | Anthony K M W, Zimov S A, Grosse G, et al. A shift of thermokarst lakes from carbon sources to sinks during the Holocene epoch[J]. Nature, 2014, 511(7510): 452-456. |
77 | Jorgenson M T, Shur Y L, Pullman E R. Abrupt increase in permafrost degradation in Arctic Alaska[J]. Geophysical Research Letters, 2006, 33(2): L02503. |
78 | Jia Lin, Fan Chengyan, Mu Mei, et al. Studies of thermokarst and its effects on ecosystem carbon cycle in the Third Polar regions and the Arctic[J]. Journal of Glaciology and Geocryology, 2020, 42(1): 157-169. |
贾麟, 范成彦, 母梅, 等. 从第三极到北极:热喀斯特及其对碳循环影响研究进展[J]. 冰川冻土, 2020, 42(1): 157-169. | |
79 | Matveev A, Laurion I, Deshpande B N, et al. High methane emissions from thermokarst lakes in subarctic peatlands[J]. Limnology and Oceanography, 2016, 61: S150-S164. |
80 | Olefeldt D, Turetsky M R, Crill P M, et al. Environmental and physical controls on northern terrestrial methane emissions across permafrost zones[J]. Global Change Biology, 2013, 19(2): 589-603. |
81 | Walter K M, Zimov S A, Chanton J P, et al. Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming[J]. Nature, 2006, 443(7107): 71-75. |
82 | Repo M E, Huttunen J T, Naumov A V, et al. Release of CO2 and CH4 from small wetland lakes in western Siberia[J]. Tellus Series B-Chemical and Physical Meteorology, 2007, 59(5): 788-796. |
83 | Prairie Y T, Del Giorgio P A. A new pathway of freshwater methane emissions and the putative importance of microbubbles[J]. Inland Waters, 2013, 3(3): 311-320. |
84 | Anthony K W, Daanen R, Anthony P, et al. Methane emissions proportional to permafrost carbon thawed in Arctic lakes since the 1950s[J]. Nature Geoscience, 2016, 9(9): 679-682. |
85 | Delsontro T, Mcginnis D F, Wehrli B, et al. Size Does matter: importance of large bubbles and small-scale hot spots for methane transport[J]. Environmental Science & Technology, 2015, 49(3): 1268-1276. |
86 | Wik M, Varner R K, Anthony K W, et al. Climate-sensitive northern lakes and ponds are critical components of methane release[J]. Nature Geoscience, 2016, 9(2): 99-105. |
87 | Zona D, Lipson D A, Paw U K T, et al. Increased CO2 loss from vegetated drained lake tundra ecosystems due to flooding[J]. Global Biogeochemical Cycles, 2012, 26(2): 1-12. |
88 | Jones M C, Grosse G, Jones B M, et al. Peat accumulation in drained thermokarst lake basins in continuous, ice-rich permafrost, northern Seward Peninsula, Alaska[J]. Journal of Geophysical Research: Biogeosciences, 2012, 117(G2): 1-15. |
89 | Lawrence D M, Koven C D, Swenson S C, et al. Permafrost thaw and resulting soil moisture changes regulate projected high-latitude CO2 and CH4 emissions[J]. Environmental Research Letters, 2015, 10(9): 094011. |
90 | Yang G, Peng Y, Olefeld D, et al. Changes in methane flux along a permafrost thaw sequence on the Tibetan Plateau[J]. Environmental Science & Technology, 2018, 52(3): 1244-1252. |
91 | Preuss I, Knoblauch C, Gebert J, et al. Improved quantification of microbial CH4 oxidation efficiency in arctic wetland soils using carbon isotope fractionation[J]. Biogeosciences, 2013, 10(4): 2539-2552. |
92 | Schadel C, Bader M K F, Schuur E A G, et al. Potential carbon emissions dominated by carbon dioxide from thawed permafrost soils[J]. Nature Climate Change, 2016, 6(10): 950-953. |
93 | Mu C C, Abbott B W, Zhao Q, et al. Permafrost collapse shifts alpine tundra to a carbon source but reduces N2O and CH4 release on the northern Qinghai-Tibetan Plateau[J]. Geophysical Research Letters, 2017, 44(17): 8945-8952. |
94 | Aronson E L, Dubinsky E A, Helliker B R. Effects of nitrogen addition on soil microbial diversity and methane cycling capacity depend on drainage conditions in a pine forest soil[J]. Soil Biology & Biochemistry, 2013, 62: 119-128. |
95 | Abu-Hamdeh N H, Khdair A I, Reeder R C. A comparison of two methods used to evaluate thermal conductivity for some soils[J]. International Journal of Heat and Mass Transfer, 2001, 44(5): 1073-1078. |
96 | Peltoniemi K, Laiho R, Juottonen H, et al. Responses of methanogenic and methanotrophic communities to warming in varying moisture regimes of two boreal fens[J]. Soil Biology & Biochemistry, 2016, 97: 144-156. |
97 | Foster G R, Meyer L D. Transport of soil particles by shallow flow[J]. Transactions of the Asae, 1972, 15(1): 99-102. |
98 | Wang J, Li Z, Cai C, et al. Particle size and shape variation of Ultisol aggregates affected by abrasion under different transport distances in overland flow[J]. Catena, 2014, 123: 153-162. |
99 | Marushchak M E, Pitkamaki A, Koponen H, et al. Hot spots for nitrous oxide emissions found in different types of permafrost peatlands[J]. Global Change Biology, 2011, 17(8): 2601-2614. |
100 | Darrouzet-Nardi A, Weintraub M N. Evidence for spatially inaccessible labile N from a comparison of soil core extractions and soil pore water lysimetry[J]. Soil Biology & Biochemistry, 2014, 73: 22-32. |
101 | Harms T K, Abbott B W, Jones J B. Thermo-erosion gullies increase nitrogen available for hydrologic export[J]. Biogeochemistry, 2014, 117(2/3): 299-311. |
102 | Tanski G, Lantuit H, Ruttor S, et al. Transformation of terrestrial organic matter along thermokarst-affected permafrost coasts in the Arctic[J]. Science of the Total Environment, 2017, 581: 434-447. |
103 | Abbott B W, Larouche J R, Jones J B, et al. Elevated dissolved organic carbon biodegradability from thawing and collapsing permafrost[J]. Journal of Geophysical Research-Biogeosciences, 2014, 119(10): 2049-2063. |
104 | Mu C, Zhang T, Zhang X, et al. Carbon loss and chemical changes from permafrost collapse in the northern Tibetan Plateau[J]. Journal of Geophysical Research-Biogeosciences, 2016, 121(7): 1781-1791. |
105 | Yang G, Peng Y, Marushchak M E, et al. Magnitude and pathways of increased nitrous oxide emissions from uplands following permafrost thaw[J]. Environmental Science & Technology, 2018, 52(16): 9162-9169. |
106 | Levy-Booth D J, Prescott C E, Grayston S J. Microbial functional genes involved in nitrogen fixation, nitrification and denitrification in forest ecosystems[J]. Soil Biology & Biochemistry, 2014, 75: 11-25. |
107 | Mao C, Kou D, Wang G, et al. Trajectory of topsoil nitrogen transformations along a thermo-erosion gully on the Tibetan Plateau[J]. Journal of Geophysical Research-Biogeosciences, 2019, 124(5): 1342-1354. |
108 | Elberling B, Christiansen H H, Hansen B U. High nitrous oxide production from thawing permafrost[J]. Nature Geoscience, 2010, 3(5): 332-335. |
109 | Voigt C, Marushchak M E, Lamprecht R E, et al. Increased nitrous oxide emissions from Arctic peatlands after permafrost thaw[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(24): 6238-6243. |
110 | Chen L, Liu L, Mao C, et al. Nitrogen availability regulates topsoil carbon dynamics after permafrost thaw by altering microbial metabolic efficiency[J]. Nature Communications, 2018, 9(1): 1-11. |
111 | Bracho R, Natali S, Pegoraro E, et al. Temperature sensitivity of organic matter decomposition of permafrost-region soils during laboratory incubations[J]. Soil Biology & Biochemistry, 2016, 97: 1-14. |
112 | Walz J, Knoblauch C, Tigges R, et al. Greenhouse gas production in degrading ice-rich permafrost deposits in northeastern Siberia[J]. Biogeosciences, 2018, 15(17): 5423-5436. |
113 | Lee H, Schuur E A G, Inglett K S, et al. The rate of permafrost carbon release under aerobic and anaerobic conditions and its potential effects on climate[J]. Global Change Biology, 2012, 18(2): 515-527. |
114 | Wang J, Song C, Zhang J, et al. Temperature sensitivity of soil carbon mineralization and nitrous oxide emission in different ecosystems along a mountain wetland-forest ecotone in the continuous permafrost of Northeast China[J]. Catena, 2014, 121: 110-118. |
115 | Mu C, Zhang T, Zhang X, et al. Sensitivity of soil organic matter decomposition to temperature at different depths in permafrost regions on the northern Qinghai-Tibet Plateau[J]. European Journal of Soil Science, 2016, 67(6): 773-781. |
116 | Mu C, Li L, Wu X, et al. Greenhouse gas released from the deep permafrost in the northern Qinghai-Tibetan Plateau[J]. Scientific Reports, 2018, 8(1): 1-9. |
117 | Knoblauch C, Beer C, Liebner S, et al. Methane production as key to the greenhouse gas budget of thawing permafrost[J]. Nature Climate Change, 2018, 8(4): 309-312. |
118 | Knoblauch C, Beer C, Sosnin A, et al. Predicting long-term carbon mineralization and trace gas production from thawing permafrost of Northeast Siberia[J]. Global Change Biology, 2013, 19(4): 1160-1172. |
119 | Kirkwood A, Roy-Léveillée P, Packalen M, et al. Evolution of palsas and peat plateaus in the Hudson Bay Lowlands: permafrost degradation and the production of greenhouse gases[M]//Cold Regions Engineering 2019. Reston, VA: American Society of Civil Engineers, 2019: 597-606. |
120 | Song C, Wang X, Miao Y, et al. Effects of permafrost thaw on carbon emissions under aerobic and anaerobic environments in the Great Hing'an Mountains, China[J]. Science of the Total Environment, 2014, 487: 604-610. |
121 | Rivkina E, Friedmann E I, Mckay C P, et al. Metabolic activity of permafrost bacteria below the freezing point[J]. Applied and Environmental Microbiology, 2000, 66(8): 3230-3233. |
122 | Waldrop M P, Wickland K P, White R A, et al. Molecular investigations into a globally important carbon pool: permafrost-protected carbon in Alaskan soils[J]. Global Change Biology, 2010, 16(9): 2543-2554. |
123 | Das S, Adhya T K. Dynamics of methanogenesis and methanotrophy in tropical paddy soils as influenced by elevated CO2 and temperature interaction[J]. Soil Biology & Biochemistry, 2012, 47: 36-45. |
124 | Nguyen Thanh D, Crill P, Bastviken D. Implications of temperature and sediment characteristics on methane formation and oxidation in lake sediments[J]. Biogeochemistry, 2010, 100(1): 185-196. |
125 | Noll M, Klose M, Conrad R. Effect of temperature change on the composition of the bacterial and archaeal community potentially involved in the turnover of acetate and propionate in methanogenic rice field soil[J]. Fems Microbiology Ecology, 2010, 73(2): 215-225. |
126 | Inglett K S, Inglett P W, Reddy K R, et al. Temperature sensitivity of greenhouse gas production in wetland soils of different vegetation[J]. Biogeochemistry, 2012, 108(1): 77-90. |
127 | Bring A, Fedorova I, Dibike Y, et al. Arctic terrestrial hydrology: a synthesis of processes, regional effects, and research challenges[J]. Journal of Geophysical Research-Biogeosciences, 2016, 121(3): 621-649. |
128 | Connon R F, Quinton W L, Craig J R, et al. Changing hydrologic connectivity due to permafrost thaw in the lower Liard River valley, NWT, Canada[J]. Hydrological Processes, 2014, 28(14): 4163-4178. |
129 | Mu C, Zhang F, Chen X, et al. Carbon and mercury export from the Arctic rivers and response to permafrost degradation[J]. Water Research, 2019, 161: 54-60. |
130 | Zolkos S, Tank S E, Striegl R G, et al. Thermokarst effects on carbon dioxide and methane fluxes in streams on the Peel Plateau (NWT, Canada)[J]. Journal of Geophysical Research-Biogeosciences, 2019, 124(7): 1781-1798. |
131 | Zolkos S, Tank S E, Kokelj S V. Mineral weathering and the permafrost carbon-climate feedback[J]. Geophysical Research Letters, 2018, 45(18): 9623-9632. |
132 | Drake T W, Guillemette F, Hemingway J D, et al. The ephemeral signature of permafrost carbon in an Arctic fluvial network[J]. Journal of Geophysical Research-Biogeosciences, 2018, 123(5): 1475-1485. |
133 | Chupakov A V, Pokrovsky O S, Moreva O Y, et al. High resolution multi-annual riverine fluxes of organic carbon, nutrient and trace element from the largest European Arctic river, Severnaya Dvina[J]. Chemical Geology, 2020, 538: 119491. |
134 | Song C, Wang G, Mao T, et al. Spatiotemporal variability and sources of DIC in permafrost catchments of the Yangtze River source region: insights from stable carbon isotope and water chemistry[J]. Water Resources Research, 2020, 56(1): e2019WR025343. |
135 | Ewing S A, O'donnell J A, Aiken G R, et al. Long-term anoxia and release of ancient, labile carbon upon thaw of Pleistocene permafrost[J]. Geophysical Research Letters, 2015, 42(24): 10730-10738. |
136 | Schuur E A G, Mcguire A D, Schadel C, et al. Climate change and the permafrost carbon feedback[J]. Nature, 2015, 520(7546): 171-179. |
137 | Meijer S N, Ockenden W A, Sweetman A, et al. Global distribution and budget of PCBs and HCB in background surface soils: implications for sources and environmental processes[J]. Environmental Science & Technology, 2003, 37(4): 667-672. |
138 | Park S, Holsen T M, Kim P, et al. Laboratory investigation of factors affecting mercury emissions from soils[J]. Environmental Earth Sciences, 2014, 72(7): 2711-2721. |
139 | Ren J, Wang X, Gong P, et al. Characterization of Tibetan soil as a source or sink of atmospheric persistent organic pollutants: seasonal shift and impact of global warming[J]. Environmental Science & Technology, 2019, 53(7): 3589-3598. |
140 | Cabrerizo A, Dachs J, Barcelo D, et al. Climatic and biogeochemical controls on the remobilization and reservoirs of persistent organic pollutants in Antarctica[J]. Environmental Science & Technology, 2013, 47(9): 4299-4306. |
141 | Ci Z, Peng F, Xue X, et al. Air-surface exchange of gaseous mercury over permafrost soil: an investigation at a high-altitude (4 700 m a.s.l.) and remote site in the central Qinghai-Tibet Plateau[J]. Atmospheric Chemistry and Physics, 2016, 16(22): 14741-14754. |
142 | Sun S, Ma M, He X, et al. Vegetation mediated mercury flux and atmospheric mercury in the alpine permafrost region of the central Tibetan Plateau[J]. Environmental Science & Technology, 2020, 54(10): 6043-6052. |
143 | Ci Z, Peng F, Xue X, et al. Temperature sensitivity of gaseous elemental mercury in the active layer of the Qinghai-Tibet Plateau permafrost[J]. Environmental Pollution, 2018, 238: 508-515. |
144 | Olson C, Jiskra M, Biester H, et al. Mercury in active-layer tundra soils of Alaska: concentrations, pools, origins, and spatial distribution[J]. Global Biogeochemical Cycles, 2018, 32(7): 1058-1073. |
145 | Kucklick J R, Hinckley D A, Bidleman T F. Determination of henry law constants for hexachlorocyclohexanes in distilled water and artificial seawater as a function of temperature[J]. Marine Chemistry, 1991, 34(3/4): 197-209. |
146 | Giesy J P, Kannan K. Peer reviewed: perfluorochemical surfactants in the environment[J]. Environmental Science Technology, 2002, 36(7): 146-152. |
147 | Schuster P F, Striegl R G, Aiken G R, et al. Mercury export from the Yukon River Basin and potential response to a changing climate[J]. Environmental Science & Technology, 2011, 45(21): 9262-9267. |
148 | Outridge P M, Macdonald R W, Wang F, et al. A mass balance inventory of mercury in the Arctic Ocean[J]. Environmental Chemistry, 2008, 5(2): 89-111. |
149 | Zhang Y, Jacob D J, Dutkiewicz S, et al. Biogeochemical drivers of the fate of riverine mercury discharged to the global and Arctic oceans[J]. Global Biogeochemical Cycles, 2015, 29(6): 854-864. |
150 | Fisher J A, Jacob D J, Soerensen A L, et al. Riverine source of Arctic Ocean mercury inferred from atmospheric observations[J]. Nature Geoscience, 2012, 5(7): 499-504. |
151 | Zolkos S, Krabbenhoft D P, Suslova A, et al. Mercury export from Arctic great rivers[J]. Environmental Science & Technology, 2020, 54(7): 4140-4148. |
152 | Leitch D R, Carrie J, Lean D, et al. The delivery of mercury to the Beaufort Sea of the Arctic Ocean by the Mackenzie River[J]. Science of the Total Environment, 2007, 373(1): 178-195. |
153 | Emmerton C A, Graydon J A, Gareis J A L, et al. Mercury export to the Arctic Ocean from the Mackenzie River, Canada[J]. Environmental Science & Technology, 2013, 47(14): 7644-7654. |
154 | Qureshi A, O’driscoll N J, Macleod M, et al. Photoreactions of mercury in surface ocean water: gross reaction kinetics and possible pathways[J]. Environmental Science & Technology, 2010, 44(2): 644-649. |
155 | Ci Z, Peng F, Xue X, et al. Permafrost thaw dominates mercury emission in Tibetan thermokarst ponds[J]. Environmental Science & Technology, 2020, 54(9): 5456-5466. |
156 | Gordon J, Quinton W, Branfireun B A, et al. Mercury and methylmercury biogeochemistry in a thawing permafrost wetland complex, Northwest Territories, Canada[J]. Hydrological Processes, 2016, 30(20): 3627-3638. |
157 | Yang Z, Fang W, Lu X, et al. Warming increases methylmercury production in an Arctic soil[J]. Environmental Pollution, 2016, 214: 504-509. |
158 | Odland J Ø, Donaldson S, Dudarev A, et al. AMAP assessment 2015: human health in the Arctic[J]. International Journal of Circumpolar Health, 2016, 75: 1-3. |
159 | Christensen T R, Johansson T, Åkerman H J, et al. Thawing sub-arctic permafrost: effects on vegetation and methane emissions[J]. Geophysical Research Letters, 2004, 31(4): 1-8. |
160 | Johansson T, Malmer N, Crill P M, et al. Decadal vegetation changes in a northern peatland, greenhouse gas fluxes and net radiative forcing[J]. Global Change Biology, 2006, 12(12): 2352-2369. |
161 | Osterkamp T E. Characteristics of the recent warming of permafrost in Alaska[J]. Journal of Geophysical Research: Earth Surface, 2007, 112: F02S02. |
162 | Grosse G, Goetz S, Mcguire A D, et al. Changing permafrost in a warming world and feedbacks to the Earth system[J]. Environmental Research Letters, 2016, 11(4): 040201. |
163 | Cheng G, Jin H. Permafrost and groundwater on the Qinghai-Tibet Plateau and in northeast China[J]. Hydrogeology Journal, 2013, 21(1): 5-23. |
164 | Wellman T P, Voss C I, Walvoord M A. Impacts of climate, lake size, and supra- and sub-permafrost groundwater flow on lake-talik evolution, Yukon Flats, Alaska (USA)[J]. Hydrogeology Journal, 2013, 21(1): 281-298. |
165 | Wang Xiaoping, Sun Dianchao, Yao Tandong. Climate change and global cycling of persistent organic pollutants: a critical review[J]. Science China: Earth Sciences, 2016, 46(10): 1301-1316. |
王小萍, 孙殿超, 姚檀栋. 气候变化与持久性有机污染物全球循环[J]. 中国科学: 地球科学, 2016, 46(10): 1301-1316. |
[1] | 李飞,郭佳锴,张世强. VIC-CAS导热率和未冻水算法改进及其对多年冻土水热过程模拟的实验研究[J]. 冰川冻土, 2021, 43(6): 1888-1903. |
[2] | 王一博,吕明侠,赵海鹏,高泽永. 青藏高原多年冻土区活动层土壤入渗特征及机理分析[J]. 冰川冻土, 2021, 43(5): 1301-1311. |
[3] | 范星文,林战举,罗京,刘明浩,尹国安,高泽永. 高海拔多年冻土区路基工程行为对低温多年冻土长期影响的监测研究[J]. 冰川冻土, 2021, 43(5): 1323-1333. |
[4] | 冯晓琳,张艳林,常晓丽. 大兴安岭湿地多年冻土区活动层水热特征分析[J]. 冰川冻土, 2021, 43(5): 1468-1479. |
[5] | 温理想,郭蒙,黄书博,于方冰,钟超,周粉粉. 大兴安岭北部多年冻土区植被对活动层厚度变化的响应[J]. 冰川冻土, 2021, 43(5): 1531-1541. |
[6] | 张明礼,王斌,王得楷,叶伟林,郭宗云,高樯,岳国栋. 降雨对青藏高原多年冻土区地表辐射的影响——以北麓河地区为例[J]. 冰川冻土, 2021, 43(4): 1092-1101. |
[7] | 宋正民,穆彦虎,马巍,俞祁浩,栗晓林. 高海拔冻土区通风管路基管内风速及影响因素研究[J]. 冰川冻土, 2021, 43(4): 1111-1120. |
[8] | 黄克威,王根绪,宋春林,俞祁浩. 基于LSTM的青藏高原冻土区典型小流域径流模拟及预测[J]. 冰川冻土, 2021, 43(4): 1144-1156. |
[9] | 刘宏超,马俊杰,李韧. 基于KNN机器学习方法对青藏高原唐古拉地区表层土壤水热状况的模拟[J]. 冰川冻土, 2021, 43(4): 1243-1252. |
[10] | 刘世博,赵林,汪凌霄,邹德富,周华云,谢昌卫,乔永平,岳广阳,史健宗. InSAR技术在多年冻土区形变监测的应用[J]. 冰川冻土, 2021, 43(4): 964-975. |
[11] | 李小苗,吴泽坤,彭廷江,马振华,冯展涛,李孟,郭本泓,宋春晖. 青藏高原东北缘小水子地区晚中新世-上新世生态演化及其意义[J]. 冰川冻土, 2021, 43(3): 776-785. |
[12] | 李孟,彭廷江,韩冰雁,郭本泓,李小苗,马振华,冯展涛,宋春晖. 皋兰山红黏土-黄土记录的上新世-更新世转型期C3/C4植被演化[J]. 冰川冻土, 2021, 43(3): 798-808. |
[13] | 李欣泽,金会军. 多年冻土区天然气管道建设关键技术[J]. 冰川冻土, 2021, 43(2): 628-637. |
[14] | 孙哲,赵林,胡国杰,乔永平,杜二计,邹德富,谢昌卫. 下边界条件对多年冻土温度场变化数值模拟的影响[J]. 冰川冻土, 2021, 43(2): 357-369. |
[15] | 张玉兰, 康世昌, 史贵涛, 杜文涛. 青藏高原冰川氮记录研究进展[J]. 冰川冻土, 2021, 43(1): 135-144. |
|
©2018 冰川冻土编辑部
电话:0931-8260767 E-mail: edjgg@lzb.ac.cn 邮编:730000