DOI:10.7522/j.issn.1000-0240.2017.0069

SU Xing, WEI Wanhong, GUO Wanqin, et al. Analyzing the impact of relief amplitude to loess landslides based on SRTM DEM in Tianshui Prefecture[J]. Journal of Glaciology and Geocryology, 2017, 39(3): 616-622. [宿星,魏万鸿,郭万钦,等. 基于 SRTM DEM 的地形起伏度对天水 市黄土滑坡的影响分析[J]. 冰川冻土, 2017, 39(3): 616-622.]

基于 SRTM DEM 的地形起伏度对天水市 黄土滑坡的影响分析

宿 星^{1,2}, 魏万鸿²*, 郭万钦³, 王思源¹, 王国亚², 吴玮江², 叶伟林^{1,2} (1. 兰州大学资源环境学院西部环境教育部重点实验室,甘肃兰州 730000; 2. 甘肃省科学院地质自然灾害防治研究所, 甘肃 兰州 730000; 3. 中国科学院 西北生态环境资源研究院 冰冻圈科学国家重点实验室,甘肃 兰州 730000)

摘 要: 以天水市辖区 30 m 分辨率的 SRTM DEM 数据为基础,首先利用 GIS 空间分析模块中邻域统 计分析法,依次选取 2×2、3×3、4×4、…、28×28、29×29、30×30 共 29 个矩形邻域分析窗口,运用 均值变点分析法进行最佳计算单元的计算分析。结果表明: 12×12 的网格大小(12.96×10⁴ m²)为曲 线突变的拐点,作为曲线由陡变缓的阈值,确定 12×12 的网格大小(12.96×10⁴ m²)为研究区地形起 伏度计算的最佳单元,生成研究区地形起伏度分级图。进而采用确定性系数法(CF)、证据权法、信息 量法和条件概率法对研究区发育的黄土滑坡灾害与地形起伏度之间的相关关系进行了定量分析。研究 结果表明,区内地形起伏度影响因子层中地形起伏度 60~120 m 的分级因子层为黄土滑坡灾害的易发 因子层,而其中 60~90 m 区间的值最大,为黄土滑坡灾害的优势因子区间,对滑坡的响应最敏感。 关键词:黄土滑坡;地形起伏度;确定性系数法;证据权法;信息量法;条件概率法;天水市 中图分类号: P642.22 文献标志码:A 文章编号: 1000-0240(2017)03-0616-07

0 引言

天水市位于甘肃省东南部,属陇中盆地东南隅 的天水盆地,渭河及其支流耤河自西向东穿城而 过,为典型的河谷盆地型城市。区内特殊的地质环 境条件,导致地质灾害频发,也使天水成为我国滑 坡、泥石流等地质灾害多发的城市之一,历史上曾 造成了严重的人员伤亡和经济损失。滑坡的发育受 环境本底因素和触发因素等众多影响因素控制,环 境本底因素主要包括地形地貌因子和地质因子二种 类型;而触发因素包括降雨、地震和人类活动。其 中地形起伏度是确定地形地貌条件最重要的因子之 一^[1]。

地形起伏度(relief amplitude)是描述一个区域 地形特征的一个宏观性指标,是表征地表侵蚀和物 质坡移的势能的一个指标^[2],由归一化的长度或面 积表示^[3]。研究区的地形起伏度由给定区域内最高点海拔高度与最低点海拔高度的差值(即相对高差)计算得到。近年来,地形起伏度被广泛应用于区域地质灾害评价^[4-9]。因此,采用 30 m 分辨率的 SRTM DEM 数据对天水市辖区滑坡与地形起伏度的相互影响及作用开展定量分析研究,对研究区内滑坡灾害风险评价和滑坡灾害防治等均具有十分重要的理论意义和现实价值,为管理决策部门提供科学的技术支撑。

1 研究区概况

研究区域位于天水市,地处陇中黄土高原南部,北秦岭山地北部。天水市辖区(秦州区和麦积区)为天水市的政治、经济、文化中心,总人口约130万,总面积约5833 km²,其中秦州区面积约2349 km²,麦积区面积约3484 km²,地理位置为

收稿日期: 2017-01-15;修订日期: 2017-03-18

基金项目:国家自然科学基金项目(41362014);国家重点基础研究发展计划"973计划"项目(2014CB744703);甘肃省科学院应用研发项目 (2012JK-07;2013JK-06;2013JK-07;2014JK-04;2014JK-05;2015JK-01;2017JK-01);甘肃省青年基金项目(145RJYA314)资助

作者简介: 宿星(1979-),男,甘肃定西人,副研究员,2006年在兰州大学获硕士学位,现为兰州大学在读博士研究生,从事地质灾害防治研究. E-mail: geocity@163.com

^{*}执笔人:魏万鸿, E-mail: wwh582@163.com.

图 1 研究区位置与滑坡分布 Fig. 1 Map showing the landslide distribution in the study area

105°13′15″ ~ 106°42′58″ E, 34°5′5″ ~ 34°49′40″ N (图1)。天水市属典型的人口密集型大城市,同时 区内脆弱的地质环境条件,也使得天水市成为滑坡 灾害的多发高发区,严重威胁区内人民生命财产安 全。区内海拔高程754~2713 m,区内气候属暖温 带半湿润半干旱气候区, 年平均气温为 11 ℃, 年 平均降水量 491.7 mm, 自东南向西北逐渐减少。 降水量主要集中在7-9月,占全年降水量的70% 左右,且多以集中的暴雨形式出现,暴雨是引发各 类地质灾害的主要因素^[10],一般也多发生在7-9 月。区内一次连续最大降水量为286.6 mm, 日最 大降水量为113 mm,小时最大降水量为57.3 mm。 研究区地处青藏高原与黄土高原的过渡地带, 地貌 类型主要为北部黄土丘陵沟壑区和南部基岩山区; 区内出露的地层岩性主要为新生代的古近系巨厚砂 砾岩、新近系巨厚泥岩和第四系风积马兰黄土 等^[11],岩土体工程性质差;受地质构造影响,区内 发育西秦岭北缘断裂带、凤凰山断裂带和东泉断裂 带等多条断裂带:区内发育的水系主要为渭河水系 和嘉陵江水系;研究区地处我国六盘山南北地震带 中段银川 - 天水 - 武都带和秦岭北缘东西地震带中 部天水 - 兰州带的交汇复合部位, 地震背景条件复 杂,活动频繁。地震基本烈度为Ⅲ度,地震动峰值 加速度为0.30 g^[12]。

2 地形起伏度最佳计算单元分析

2.1 数据来源与处理

研究采用 SRTM DEM 数据,分辨率为 30 m, 栅格单元大小为 30 m×30 m,坐标系为 WGS_1984 _UTM_Zone_48N。将天水市辖区的矢量化边界图 进行投影转换,与 DEM 数据相统一,利用该边界 提取出研究区的 DEM 数据。

2.2 地形起伏度提取

地形起伏度数据利用 ArcGIS 10 空间分析模块 中的邻域分析工具完成,邻域分析计算中首先要选 取分析窗口的类型和大小,而不同窗口类型和大小 计算得到的地形起伏度完全不同,因此科学合理地 选取邻域分析窗口的类型和大小是正确提取地形起 伏度的关键。窗口类型分为矩形、圆形、环形和扇 形等,窗口大小则输入不同的网格大小值。本文选 取通用的矩形窗口,依次计算网格大小为2×2、 3×3、4×4、…、28×28、29×29、30×30 时的地形 起伏度。然后统计不同邻域分析窗口下的地形起伏 度的平均值(表1)。

2.3 计算确定最佳统计单元

利用 Excel 软件的统计功能对表 1 中的邻域窗 口面积与平均起伏度进行对数方程拟合,得出拟合 曲线(图 2)。矩形邻域窗口下的平均起伏度与邻域

表 1 天水市辖区邻域分析窗口与地形起伏度统计 Table 1 Relief amplitude changing with analysis grid size in Tianshui Prefecture

网格大小	面积/m ²	最大地形起伏度/m	平均地形起伏度/m	网格大小	面积/m ²	最大地形起伏度/m	平均地形起伏度/m
2×2	3 600	163	15.68	17 × 17	260 100	620	171.96
3 × 3	8 100	255	30.71	18 × 18	291 600	645	179.08
4×4	14 400	282	44.88	19 × 19	324 900	658	185.94
5 × 5	22 500	299	58.17	20×20	360 000	670	192.6
6×6	32 400	334	70.62	21 × 21	396 900	679	199.04
7 × 7	44 100	357	82.32	22 × 22	435 600	687	205.31
8 × 8	57 600	388	93.36	23 × 23	476 100	687	211.37
9×9	72 900	409	103.79	24 × 24	518 400	691	217.3
10×10	90 000	428	113.71	25 × 25	562 500	691	223.03
11 × 11	108 900	454	123.14	26×26	608 400	691	228.65
12×12	129 600	483	132.16	27 × 27	656 100	692	234.1
13 × 13	152 100	510	140.77	28 × 28	705 600	699	239.45
14×14	176 400	531	149.04	29 × 29	756 900	707	244.64
15 × 15	202 500	557	156.96	30×30	810 000	719	249.75
16 × 16	230 400	589	164.61				

窗口面积的拟合曲线为 $y = 47.093 \ln x - 408.96$, 相关系数 $R^2 = 0.9648$, 拟合效果良好。

从图 2 可以看出, 在邻域分析窗口面积为 9 × 10⁴ m²(网格大小为 10 × 10)之前, 区内平均地形起 伏度随窗口面积的增大而增大, 且变化幅度较大; 在 9 × 10⁴ ~ 15. 21 × 10⁴ m²(网格大小为 10 × 10 ~ 13 × 13)之间, 曲线出现了平均地形起伏度增加由 陡变缓的点; 15. 21 × 10⁴ m²之后, 随着窗口面积的 增大, 平均地形起伏度的增加趋势变缓, 曲线趋于 平缓。拟合曲线由陡变缓的点对应的窗口面积即为 最佳统计单元的面积。 上述分析主要依据人工目视判断确定曲线上由 陡变缓的点,但这种人工判断具有很大的主观性, 准确性很难把握。故本次采用统计学上的均值变点 分析法科学计算最佳统计单元。计算分析步骤 如下^[13-16]:

(1)将研究区不同邻域窗口下的地形起伏度平均值作为均值变点分析法的非线性系统的输出数据,即{*t_i*,*i*=2,3,…,30}。计算研究区各邻域分析窗口下单位面积上的地形起伏度大小序列*T*:

 $T_i = t_i/s_i$ (*i* = 2,3,4,...,30) (1) 式中: T_i 为各分析窗口下的单位起伏度; t_i 为各分析 窗口的平均起伏度(m); s_i 为各分析窗口的面积 (m²); *i* 为矩形邻域的窗口大小。

(2) 对序列 T 取对数 lnT, 得序列 X, X 为 {X_i,
 i = 2, 3, 4, …, 30}。

(3) 计算样本序列 *X* 的算数平均值 *X* 和离差平 方和 *S*:

$$\overline{X} = \sum_{i=2}^{n} \frac{X_i}{n-1} \quad (n = 30)$$
(2)

$$S = \sum_{i=2}^{n} (X_i - \overline{X})^2 \quad (n = 30)$$
(3)

(4) 令 *i* = 2, 3, 4, …, 30, 依次对每个 *i* 将上述 *X_i*样本分为两段: *X*₂, *X*₃, …, *X_i*和 *X_{i+1}*, *X_{i+2}*, …, *X*₃₀, 分别计算每段样本的算术平均值 *X_i*, *X_i*

及总离差平方和 S_i:

$$S_{i} = \sum_{t=1}^{i-1} (X_{t} - \overline{X_{i1}})^{2} + \sum_{t=i}^{n} (X_{t} - \overline{X_{i2}})^{2} \quad (i = 2, 3, 4, \dots, 30)$$
(5)

(5) 计算 *S* 与 *S_i*的差值
$$\Delta S_{:}$$

 $\Delta S = S - S_{:}$ (*i* = 2.3.4.....29) (6)

据前人研究,变点的存在会使原始样本的离差 平方和 S 与样本分段后的离差平方和 S_i 之间的差距 即 ΔS 增大。经计算, S 值为 18.88, S_i 值、 ΔS 值见 表 2, ΔS 随邻域窗口大小的变化情况见图 3。

	Table 2	Table 2 S_i and ΔS changing with <i>i</i>							
i	S_i	ΔS	i	S_i	ΔS				
2	17.00	1.88	16	10.18	8.70				
3	15.35	3.53	17	10.49	8.39				
4	13.93	4.95	18	10.84	8.04				
5	12.86	6.02	19	11.28	7.60				
6	11.90	6.98	20	11.75	7.13				
7	11.21	7.67	21	12.29	6.59				
8	10.63	8.25	22	12.87	6.01				
9	10.23	8.65	23	13.47	5.41				
10	9.93	8.95	24	14.16	4.72				
11	9.74	9.14	25	14.83	4.05				
12	9.66	9.22	26	15.60	3.28				
13	9.66	9.22	27	16.36	2.52				
14	9.77	9.11	28	17.18	1.70				
15	0 03	8 95	20	18 02	0.86				

表 2 研究区均值变点分析统计 Fable 2 *S* and AS changing with *i*

从表 2 和图 3 可以看出, ΔS 值在邻域分析窗 口为 12×12 时达到最大值 9.22, 因此, 12×12 的 邻域分析窗口大小即为地形起伏度提取的最佳统计 单元, 面积为 12.96×10⁴ m²。

3 地形起伏度对滑坡的影响关系分析

3.1 地形起伏度数据

依据上述地形起伏度的计算和提取方法,采用 GIS 邻域分析中 12 × 12 的网格大小(12.96 × 10⁴ m²)计算生成。研究区范围内地形起伏度 3 ~ 483 m,其低值区主要分布于渭河、西汉水河谷及 其支流沟谷地带,高值区主要分布于研究区东部和 南部的水系上游地带。

将研究区地形起伏度分为9个等级: <30 m、 30~60 m、60~90 m、90~120 m、120~150 m、 150~180 m、180~210 m、210~240 m、>240 m (图4)。经统计,地形起伏度 60~90 m 区间的栅 格数占研究区总栅格数的 17.6%、90~120 m 区间 的栅格数占研究区总栅格数的 20.2%、120~150m 区间的栅格数占研究区总栅格数的 17.7%、150~ 180 m 区间的栅格数占研究区总栅格数的 15.3%, 总体上,地形起伏度 60~180 m 区间的栅格数占研 究区总栅格数的 70.8%。

3.2 滑坡数据

通过研究区已有滑坡灾害研究资料整理分析甄 别、室内遥感影像解译和野外实地调查验证等方法 建立了研究区详细、可靠的滑坡空间分布数据库, 共识别、获取到475个滑坡灾害点数据(图1),包 括秦州区257个、麦积区218个。研究区的滑坡灾 害点均为黄土滑坡,包括黄土层内滑坡、黄土-泥 岩接触面滑坡、黄土-泥岩切层滑坡、泥流型黄土 滑坡等类型。其中,470个滑坡面积在10000m²以 上,占总滑坡数的99%。总体上,选取的滑坡灾害 点满足研究样本要求。滑坡灾害点总面积89 km², 将滑坡矢量图按30m×30m的栅格大小转换为栅 格图,共得到98968个滑坡栅格单元,整个研究栅 格单元数为6481583个,研究区内总的滑坡面积 百分比为1.5%,滑坡点密度为0.1个·km⁻²。

3.3 地形起伏度对滑坡的影响分析

随着 3S 技术的发展,基于统计和概率分析的 滑坡与影响因子空间相关性研究日趋成熟和完善, 各种模型和方法得到了很好的应用和推广,如确定 性系数法(CF)^[17-25]、证据权法(WOE)^[25]、信息 量模型(I)^[26-27]、条件概率法(CP)^[28]等。确定性 系数(CF, Certainty Factor)法作为一个概率函数进 行滑坡灾害分析,其基本假设为如果未来某一地区 的地质环境条件与过去发生滑坡的诱发因素条件— 致或相似时,该地区将发生滑坡。证据权法以贝叶

Table 3 Classification of relief amplitude and CF, WOE, I and CP value in Tianshui Prefecture								
	地形起伏度分级	因子层栅格数	滑坡栅格数	CF 值	WOE 值	信息量值	条件概率值	
	1: <30 m	215 777	1 489	-0.551870	-0.821670	-0.794217229	0.451935	
	2:30~60 m	326 836	8 883	0.444992	0.631716	0.576604306	1.779984	
	3:60~90 m	1 139 664	34 448	0.502516	0.935868	0.682885664	1.979582	
	4:90~120 m	1 309 257	35 769	0.447943	0.820062	0.581790001	1.789238	
	5:120~150 m	1 150 038	12 146	-0.311610	-0.438820	-0.368626883	0.691683	
	6:150~180 m	989 990	4 174	-0.726940	-1.422740	- 1.286896549	0.276126	
	7:180~210 m	695 978	1 520	-0.858840	-2.057600	-1.944684232	0.143032	
	8:210~240 m	391 850	443	-0.927010	-2.676200	-2.603141138	0.074041	
	9: >240 m	262 193	96	-0.976380	-3.786550	-3.730564477	0.023979	

研究区地形起伏度分级及 CF 值、WOE 值、信息量 I 值、条件概率 CP 值统计 表3

斯概率统计模型为基础,基于区内滑坡存在和不存 在两种情况,用证据权法计算每个滑坡影响因子的 权重,该方法的第一个基本假设是未来滑坡发生的 条件与那些有利于过去滑坡发生的条件相似: 第二 个假设是用于滑坡制图的影响因子不随时间而改 变。信息量法一般认为滑坡灾害的产生与否与预测 过程中所获取信息的数量和质量有关,可以用信息 量来衡量。条件概率法则认为单个因子对滑坡发生 的影响程度可以通过条件概率来表示,实际计算时 可用频率来进行条件概率估算。因此,本文运用上 述方法对天水市辖区(秦州区和麦积区)黄土滑坡 与地形起伏度之间空间关系进行分析。

从表3和图4可以看出,确定性系数法(CF)、 证据权法、信息量法和条件概率法4种统计模型的 计算结果具有很好的一致性,研究区地形起伏度 60~120m区间的栅格数占研究区总栅格数的

研究区地形起伏度分级与4种统计方法计算的权重值 图 4 Fig. 4 The weighted values calculated by four statistical methods under different classification of relief amplitude

37.8%,而该区间内滑坡的栅格数占研究区总滑坡 栅格数的70.9%。区内地形起伏度的9个分级因 子层中60~120 m区间的权重值大于其余因子等级 层,该区间是滑坡易发区间,而其中60~90 m区 间的值最大,为黄土滑坡灾害的优势因子区间,对 滑坡的响应最敏感。

上述分析可知, 天水市辖区地形起伏度 60~ 90 m 的区间为黄土滑坡灾害发育的优势因子区间。 其主要原因与研究区内的地质环境条件密切相关。 研究区范围内地形起伏度值 60~90 m 的低值区主 要为渭河、西汉水等水系的斜坡中下部地带;区内 地形地貌以河谷阶地、黄土丘陵为主: 地层岩性主 要为第四系上更新统马兰黄土,局部出露新近系和 古近系泥岩、砂岩等易滑地层;坡体地质结构主要 为河谷阶地的黄土与冲洪积物组成的二元结构、黄 土丘陵的上部黄土、下部泥岩的"双层异质"结构等 易滑结构。而地形起伏度 > 90 m 的高值区主要为 研究区东部和南部的水系上游地带,区内地形地貌 为西秦岭北缘基岩山地,出露地层岩性以泥岩、砂 岩和变质岩及岩浆岩为主,区内黄土分布较少,地 形高差大,斜坡坡度较陡,因此黄土滑坡发育弱, 基岩滑坡更是零星发育。总体上,研究区滑坡的易 发区间均为地表起伏较低和坡面侵蚀较弱的区域, 表明研究区分布的黄土滑坡具有相对高差较小、坡 度较缓的典型特征,如秦州区铁炉村滑坡、龙集寨 村滑坡、胡家沟村滑坡、大柳树村滑坡和麦积区锻 压机床厂滑坡、孟家山滑坡和白家壮村滑坡等黄土 滑坡的前后缘相对高差均在 60~90 m 之间。

4 结论

利用 GIS 空间分析模块中的邻域统计分析工

具,以 SRTM DEM 数据为基础,选取 2×2、3×3、 …、30×30 共 29 个矩形邻域分析窗口,运用均值 变点分析法提取天水市辖区的地形起伏度数据,结 果表明 12×12 的邻域分析窗口大小即为地形起伏 度提取的最佳统计单元,面积为 12.96×10⁴ m²。

以 12×12 网格大小(12.96×10⁴ m²)的矩形邻 域窗口为研究区地形起伏度计算的最佳单元,提取 生成研究区地形起伏度分级图。将研究区地形起伏 度分为9 个等级: <30 m、30~60 m、60~90 m、 90~120 m、120~150 m、150~180 m、180~ 210 m、210~240 m、>240 m。

采用确定性系数法(CF)、证据权法、信息量法 和条件概率法对研究区发育的黄土滑坡灾害与地形 起伏度之间的相关关系进行了定量分析。研究结果 表明,区内地形起伏度9个分级影响因子层中地形 起伏度60~120m的分级因子层为黄土滑坡灾害的 易发因子层,而其中60~90m区间的值最大,为 黄土滑坡灾害的优势因子区间,对滑坡的响应最 敏感。

参考文献(References):

- Yin Jinhui, Chen Jie, Xu Xiwei, et al. The characteristics of the landslides triggered by the Wenchuan Ms 8.0 Earthquake from Anxian to Beichuan [J]. Journal of Asian Earth Sciences, 2010, 37(5/6): 452 - 459.
- [2] Ghimire M. Geo-hydrological hazard and risk zonation of Banganga watershed using GIS and remote sensing [J]. Journal of Nepal Geological Society, 2001, 23: 99 – 110.
- [3] Oguchi T. Drainage density and relative relief in humid steep mountains with frequent slope failure[J]. Earth Surface Processes and Landforms, 1997, 22(2): 107 – 120.
- [4] Yan Mancun, Wang Guangqian. Landslide risk assessment in the lower Lancang River watershed using GIS approach[J]. Scientia Geographica Sinica, 2007, 27(3): 365 - 370. [闫满存, 王光 谦. 基于 GIS 的澜沧江下游区滑坡灾害危险性分析[J]. 地理 科学, 2007, 27(3): 365 - 370.]
- [5] Guo Fangfang, Yang Nong, Meng Hui, et al. Application of the relief amplitude and slope analysis to regional landslide hazard assessments[J]. Geology in China, 2008, 35(1): 131 143.
 [郭芳芳,杨农,孟晖,等.地形起伏度和坡度在区域滑坡灾 害评价中的应用[J]. 中国地质, 2008, 35(1): 131 143.]
- [6] Qi Yuan, Liu Yong, Yang Zhenghua, et al. GIS-based analysis of landslide and debris flow hazard in Lanzhou[J]. Journal of Glaciology and Geocryology, 2012, 34(1): 96 - 104. [祁元, 刘勇,杨正华,等. 基于 GIS 的兰州滑坡与泥石流灾害危险 性分析[J]. 冰川冻土, 2012, 34(1): 96 - 104.]
- [7] Dahal R K, Hasegawa S, Nonomura A, et al. GIS-based weights-of-evidence modelling of rainfall-induced landslides in small catchments for landslide susceptibility mapping[J]. Environmental Geology, 2008, 54(2): 311 – 324.
- [8] Dahal R K. Regional-scale landslide activity and landslide susceptibility zonation in the Nepal Himalaya [J]. Environmental earth sciences, 2014, 71(12): 5145 – 5164.

- [9] Kavzoglu T, Sahin E K, Colkesen I. Selecting optimal conditioning factors in shallow translational landslide susceptibility mapping using genetic algorithm [J]. Engineering Geology, 2015, 192: 101 – 112.
- [10] Chen Wenwu, Liu Wei, Lin Gaochao, et al. The study on sensitivity of landslide induced by changes in loess structure[J]. Journal of Glaciology and Geocryology, 2016, 38(4): 929 936.
 [谌文武,刘伟,林高潮,等. 天水黄土结构性变化诱发滑坡 敏感性分析[J]. 冰川冻土, 2016, 38(4): 929 – 936.]
- [11] Wu Weijiang, Su Xing, Liu Wei, et al. Loess mudstone interface landslides: characteristics and causes[J]. Journal of Glaciology and Geocryology, 2014, 36(5): 1167 – 1175. [吴玮江, 宿星,刘伟,等. 黄土-泥岩接触面滑坡的特征与成因[J]. 冰 川冻土, 2014, 36(5): 1167 – 1175.]
- [12] Su Xing, Meng Xingmin, Wang Siyuan, et al. Statistics of characteristic parameters and evolutionary mechanism of landslides in typical area of Longzhong Loess Plateau: a case study of Tianshui City[J]. Quaternary Sciences, 2017, 37(2): 319 330.
 [宿星, 孟兴民, 王思源, 等. 陇中黄土高原典型地区滑坡特征参数统计及发育演化机制研究:以天水市为例[J]. 第四纪研究, 2017, 37(2): 319 330.]
- [13] Zhang Jun, Li Xiaodong, Chen Chunyan, et al. Analysis of the relief amplitude in Xinjiang[J]. Journal of Lanzhou University (Natural Sciences), 2008, 44(S1): 10-13. [张军,李晓东, 陈春艳,等. 新疆地势起伏度的分析研究[J]. 兰州大学学报 (自然科学版), 2008, 44(S1): 10-13.]
- [14] Han Haihui, Gao Ting, Yi Huan, et al. Extraction of relief amplitude based on change point method: a case study on the Tibetan Plateau[J]. Scientia Geographica Sinica, 2012, 32(1): 101-104. [韩海辉, 高婷, 易欢, 等. 基于变点分析法提取地势起伏度:以青藏高原为例[J]. 地理科学, 2012, 32(1): 101-104.]
- [15] Zhang Wei, Li Ainong. Study on the optimal scale for calculating the relief amplitude in China based on DEM[J]. Geography and Geo-Information Science, 2012, 28(4): 8 - 12. [张伟, 李爱 农. 基于 DEM 的中国地形起伏度适宜计算尺度研究[J]. 地 理与地理信息科学, 2012, 28(4): 8 - 12.]
- [16] Chen Xuexiong, Zhang Xiaojun, Chang Qingrui. A study on optimal statistical unit for relief amplitude of land surface in Shaanxi Province [J]. Bulletin of Soil and Water Conservation, 2016, 36 (3): 265 270. [陈学兄,张小军,常庆瑞. 陕西省地形起伏 度最佳计算单元研究[J]. 水土保持通报, 2016, 36(3): 265 270.]
- [17] Lan Hengxing, Wu Faquan, Zhou Chenghu, et al. Analysis on susceptibility of GIS based landslide triggering factors in Yunnan Xiaojiang watershed[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(10): 1500 1506. [兰恒星, 伍法权, 周成虎,等. 基于 GIS 的云南小江流域滑坡因子敏感性分析 [J]. 岩石力学与工程学报, 2002, 21(10): 1500 1506.]
- [18] Lan Hengxing, Wu Faquan, Wang Sijing. GIS based landslide CF multi-variable regression model and its application[J]. Journal of Mountain Science, 2002, 20(6): 732 - 737. [兰恒星, 伍法权, 王思敬. 基于 GIS 的滑坡 CF 多元回归模型及其应用 [J]. 山地学报, 2002, 20(6): 732 - 737.]
- [19] Lan Hengxing, Wang Lingjuan, Zhou Chenghu. Study on the key landslide factor by means of GIS in Xiaojiang valley, Yunnan[J]. The Chinese Journal of Geological Hazard and Control, 2003, 14(1): 100 – 106. [兰恒星,王苓涓,周成虎.云南小 江流域滑坡关键影响因子研究[J]. 中国地质灾害与防治学 报, 2003, 14(1): 100 – 106.]

- [20] Zhou Cuiying, Lin Chunxiu, Liu Zuoqiu, et al. Spatial probability analysis of landslides based on GIS technology[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(6):911-914. [周翠英, 林春秀, 刘祚秋, 等. 基于 GIS 技术的区域 性滑坡发生概率分析[J]. 岩石力学与工程学报, 2004, 23(6):911-914.]
- [21] Chen Xiaoli, Ran Hongliu, Qi Shengwen, et al. Triggering factors susceptibility of earthquake-induced landslides in 1976 Longling Earthquake[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2009, 45(1): 104 110. [陈晓利, 冉洪流, 祁生文, 等. 1976 年龙陵地震诱发滑坡的影响因子敏感性分析[J]. 北京大学学报(自然科学版), 2009, 45(1): 104 110.]
- [22] Xu Chong, Dai Fuchu, Yao Xin, et al. GIS based certainty factor analysis of landslide triggering factors in Wenchuan Earthquake[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(S1): 2972 2981. [许冲, 戴福初, 姚鑫, 等. 基于GIS 的汶川地震滑坡灾害影响因子确定性系数分析[J]. 岩石力学与工程学报, 2010, 29(S1): 2972 2981.]
- [23] Liu Lina, Xu Chong, Chen Jian. Landslide factor sensitivity analyses for landslides triggered by 2013 Lushan Earthquake using GIS platform and certainty factor method [J]. Journal of Engineering Geology, 2014, 22(6): 1176-1186. [刘丽娜, 许冲, 陈剑. GIS 支持下基于 CF 方法的 2013 年芦山地震滑坡因子 敏感性分析[J]. 工程地质学报, 2014, 22(6): 1176-1186.]
- [24] Devkota K C, Regmi A D, Pourghasemi H R, et al. Landslide

susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling Narayanghat road section in Nepal Himalaya[J]. Natural hazards, 2013, 65(1): 135 – 165.

- [25] Pourghasemi H R, Pradhan B, Gokceoglu C, et al. Application of weights-of-evidence and certainty factor models and their comparison in landslide susceptibility mapping at Haraz watershed, Iran[J]. Arabian Journal of Geosciences, 2013, 6(7): 2351 – 2365.
- [26] Gao Kechang, Cui Peng, Zhao Chunyong, et al. Landslide hazard evaluation of Wanzhou based on GIS information value method in the Three Gorges Reservoir [J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(5): 991 – 996. [高克 昌, 崔鹏, 赵纯勇,等. 基于地理信息系统和信息量模型的滑 坡危险性评价: 以重庆万州为例[J]. 岩石力学与工程学报, 2006, 25(5): 991 – 996.]
- [27] Wu Caiyan, Qiao Jianping. Relationship between landslide and lithology in the Three Gorges Reservoir area based on GIS and information value model[J]. Journal of Beijing Forestry University, 2007, 29(6): 138 – 142. [吴彩燕, 乔建平. 基于 GIS 与 信息量模型的地层因素对三峡库区滑坡发育的影响关系[J]. 北京林业大学学报, 2007, 29(6): 138 – 142.]
- [28] Chen Bolin. Sensitivity analysis of topographic factors of landslide disaster in Qingjiang River basin [J]. Yangtze River, 2012, 43(15): 39-42. [陈柏林. 清江流域滑坡灾害地形因 子敏感性分析[J]. 人民长江, 2012, 43(15): 39-42.]

Analyzing the impact of relief amplitude to loess landslides based on SRTM DEM in Tianshui Prefecture

SU Xing^{1,2}, WEI Wanhong², GUO Wanqin³, WANG Siyuan¹, WANG Guoya², WU Weijiang², YE Weilin^{1,2}

 (1. Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China;
 2. Geological Hazards Prevention Institute, Gansu Academy of Sciences, Lanzhou

730000, China; 3. State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment

and Resources, Chinese Academy of Sciences, Lanzhou 730000, China)

Abstract: Based on the SRTM DEM in the resolution of 30 m in municipal districts of Tianshui Prefecture, spatial neighborhood analysis was done with the window of 29 different sizes (from 2×2 , 3×3 , ..., to 30×30). Then, mean change-point analysis was done to select the best statistical unit (the size of window). The results show that the curve appeared a inflection point at the grid unit of 12×12 mesh size ($12.96 \times 10^4 \text{ m}^2$), which can be taken as a threshold and be used as the optimal analytical unit. Hereby, a grade diagram of relief amplitude can be completed in the study area with the mesh size of 12×12 . The correlation of loess landslides with relief amplitude were quantitatively calculated with certainty factor method, weights-of-evidence method, information method and conditional probability method. The result shows that the relief amplitude of $60 \sim 120$ m is the sensitive relief, in which, $60 \sim 90$ m is the relief with most landslides and is most sensitive to landslides. Key words: loess landslide; relief amplitude; certainty factor method; weights-of-evidence method; information method; trianshui Prefecture