[1] Hansson K, Helmisaari H S, Sah S P, et al. Fine root production and turnover of tree and understorey vegetation in Scots pine, sliver birch and Norway spruce stands in SW Sweden[J]. Forest Ecology and Management, 2013, 309:58-65. [2] Bai Wenming, Wan Shiqiang, Niu Shuli, et al. Increased temperature and precipitation interact to affect root production, mortality, and turnover in a temperate steppe:implications for ecosystem C cycling[J]. Global change biology, 2010, 16(4):1306-1316. [3] Clemmensen K E, Bahr A, Ovaskainen O, et al. Roots and associated fungi drive long-term carbon sequestration in boreal forest[J]. Science, 2013, 339(6127):1615-1618. [4] Gill R A, Jackson R B. Global patterns of root turnover for terrestrial ecosystems[J]. New Phytologist, 2000, 147(1):13-31. [5] Luke McCormack M, Eissenstat D M, Prasad A M, et al. Regional scale patterns of fine root lifespan and turnover under current and future climate[J]. Global change biology, 2013, 19(6):1697-1708. [6] Schenk H J. Vertical vegetation structure below ground:scaling from root to globe[M]//Progress in Botany. Springer Berlin Heidelberg, 2005:341-373. [7] Chaudhuri P, Nath B, Birch G. Accumulation of trace metals in grey mangrove Avicennia marina fine nutritive roots:the role of rhizosphere processes[J]. Marine pollution bulletin, 2014, 79(1):284-292. [8] Zhou Youwu, Guo Dongxin, Qiu Guoqing. Geocryology in China[M]. Beijing:Science Press, 2000.[周幼吾, 郭东信, 邱国庆. 中国冻土[M]. 北京:科学出版社, 2000.] [9] Li Wenhua, Zhou Xingmin. Ecosystem of Qinghai-Xizang(Tibetan) Plateau and approach for their sustainable management[M]. Guangzhou:Guangdong Science and Technology Press, 1998.[李文华, 周兴民. 青藏高原的生态系统和可持续经营方式[M]. 广州:广东科技出版社, 1998.] [10] Yang Jianping, Yang Suiqiao, Li Man, et al. Vulnerability of frozen ground to climate change in China[J]. Journal of Glaciology and Geocryology, 2013, 35(6):1436-1445.[杨建平, 杨岁桥, 李曼, 等. 中国冻土对气候变化的脆弱性[J]. 冰川冻土, 2013, 35(6):1436-1445.] [11] Schuur E A G, Abbott B. Climate change:High risk of permafrost thaw[J]. Nature, 2011, 480(7375):32-33. [12] Wu Qingbai, Li Xin, Li Wenjun. The prediction of permafrost change along the Qinghai-Tibet Highway, China[J]. Permafrost and Periglacial Process, 2000, 11(4):371-376. [13] Wang Chenghai, Jin Shuanglong, Shi Hongxia. Area change of the frozen ground in China in the next 50 years[J]. Journal of Glaciology and Geocryology, 2014, 36(1):1-8.[王澄海, 靳双龙, 施红霞. 未来50 a中国地区冻土面积分布变化[J]. 冰川冻土, 2014, 36(1):1-8.] [14] Repo T, Sirkiä S, Heinonen J, et al. Effects of frozen soil on growth and longevity of fine roots of Norway spruce[J]. Forest Ecology and Management, 2014, 313:112-122. [15] Yang Yuanhe, Fang Jingyun, Pan Yude, et al. Aboveground biomass in Tibetan grasslands[J]. Journal of Arid Environments, 2009, 73(1):91-95. [16] Yue Guangyang, Zhao Lin, Zhao Yonghua, et al. Relationship between soil properties in permafrost active layer and surface vegetation in Xidatan on the Qinghai-Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2013, 35(3):565-573.[岳广阳, 赵林, 赵拥华, 等. 青藏高原西大滩多年冻土活动层土壤性状与地表植被的关系[J]. 冰川冻土, 2013, 35(3):565-573.] [17] Wang Changting, Long Ruijun, Wang Qiji, et al. Effects of altitude on plant-species diversity and productivity in an alpine meadow, Qinghai Tibetan plateau[J]. Australian Journal of Botany, 2007, 55(2):110-117. [18] Wang Genxu, Li Yuanshou, Wu Qingbai, et al. Impacts of permafrost changes on alpine ecosystem in Qinghai-Tibet Plateau[J]. Science in China(Series D:Earth Sciences), 2006, 49(11):1156-1169.[王根绪, 李元寿, 吴青柏, 等. 青藏高原冻土区冻土与植被的关系及其对高寒生态系统的影响[J]. 中国科学(D辑:地球科学), 2006, 36(8):743-754.] [19] Wu Qingbai, Shen Yongping, Shi Bin. Relationship between frozen soil together with its water-heat process and ecological environment in the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2003, 25(2):250-255.[吴青柏, 沈永平, 施斌. 青藏高原冻土及水热过程与寒区生态环境的关系[J]. 冰川冻土, 2003, 25(2):250-255.] [20] Zhang Senqi, Wang Yonggui, Zhao Yongzhen, et al. Permafrost degradation and its environmental sequent in the source regions of the Yellow River[J]. Journal of Glaciology and Geocryology, 2004, 26(1):1-6.[张森琦, 王永贵, 赵永真, 等. 黄河源区多年冻土退化及其环境反映[J]. 冰川冻土, 2004, 26(1):1-6.] [21] Oliveira R S, Bezerra L, Davidson E A, et al. Deep root function in soil water dynamics in cerrado savannas of central Brazil[J]. Functional Ecology, 2005, 19(4):574-581. [22] Tryon P R, Chapin Iii F S. Temperature control over root growth and root biomass in taiga forest trees[J]. Canadian Journal of Forest Research, 1983, 13(5):827-833. [23] Cleavitt N L, Fahey T J, Groffman P M, et al. Effects of soil freezing on fine roots in a northern hardwood forest[J]. Canadian Journal of Forest Research, 2008, 38(1):82-91. [24] Repo T, Lehto T, Fin r L. Delayed soil thawing affects root and shoot functioning and growth in Scots pine[J]. Tree physiology, 2008, 28(10):1583-1591. [25] Bassirirad H. Kinetics of nutrient uptake by roots:responses to global change[J]. New Phytologist, 2000, 147(1):155-169. [26] Tu Jing, Zhang Min, Xu Baoguo, et al. Effects of different freezing methods on the quality and microstructure of lotus(Nelumbo nucifera) root[J]. International Journal of Refrigeration, 2015, 52:59-65. [27] Zak D R, Holmes W E, MacDonald N W, et al. Soil temperature, matric potential, and the kinetics of microbial respiration and nitrogen mineralization[J]. Soil Science Society of America Journal, 1999, 63(3):575-584. [28] Herrmann A, Witter E. Sources of C and N contributing to the flush in mineralization upon freeze thaw cycles in soils[J]. Soil Biology and Biochemistry, 2002, 34(10):1495-1505. [29] Feng Xiaojuan, Nielsen L L, Simpson M J. Responses of soil organic matter and microorganisms to freeze thaw cycles[J]. Soil Biology and Biochemistry, 2007, 39(8):2027-2037. [30] Tierney G L, Fahey T J, Groffman P M, et al. Soil freezing alters fine root dynamics in a northern hardwood forest[J]. Biogeochemistry, 2001, 56(2):175-190. [31] Wang Jianlin, Zhong Zhiming, Wang Zhonghong, et al. Soil C/N distribution characteristics of alpine steppe ecosystem in Qinghai-Tibetan Plateau[J]. Acta Ecologica Sinica, 2014, 34(22):6678-6691.[王健林, 钟志明, 王忠红, 等. 青藏高原高寒草原生态系统土壤碳氮比的分布特征[J]. 生态学报, 2014, 34(22):6678-6691.] [32] Zhou Huakun, Zhao Xinquan, Zhou Li, et al. A study on correlations between vegetation degradation and soil degradation in the‘Alpine Meadow’of the Qinghai-Tibetan Plateau[J]. Acta Pratacul Turae Sinica, 2005, 14(3):31-40.[周华坤, 赵新全, 周立, 等.青藏高原高寒草甸的植被退化与土壤退化特征研究[J]. 草业学报, 2005, 14(3):31-40.] [33] Ma Weiling, Shi Peili, Li Wenhua, et al. Changes in individual plant traits and biomass allocation in alpine meadow with elevation variation on the Qinghai-Tibetan Plateau[J]. Science in China(Series C:Life Sciences), 2010, 53(9):1142-1151.[马维玲, 石培礼, 李文华, 等. 青藏高原高寒草甸植株性状和生物量分配的海拔梯度变异[J]. 中国科学(C辑:生命科学), 2010, 40(6):533-543.] [34] Xu Manhou, Xue Xian. A research on summer vegetation characteristics and short-time responses to experimental warming of alpine meadow in the Qinghai-Tibetan Plateau[J]. Acta Ecologica Sinica, 2013, 33(7):2071-2083.[徐满厚, 薛娴. 青藏高原高寒草甸夏季植被特征及对模拟增温的短期响应[J]. 生态学报, 2013, 33(7):2071-2083.] [35] Wang Changting, Cao Guangmin, Wang Qilan, et al. Changes in plant biomass and species composition of alpine Kobresia meadows along altitudinal gradient on the Qinghai-Tibetan Plateau[J]. Science China(Series C:Life Sciences), 2008, 51(1):86-94.[王长庭, 曹广民, 王启兰, 等. 青藏高原高寒草甸植物群落物种组成和生物量沿环境梯度的变化[J]. 中国科学(C辑:生命科学), 2007, 37(5):585-592.] [36] Liu Xiaodong, Chen Baode. Climatic warming in the Tibetan Plateau during recent decades[J]. International journal of climatology, 2000, 20(14):1729-1742. [37] Liu Minghao, Sun Zhizhong, Niu Fujun, et al. Variation characteristics of the permafrost along the Qinghai-Tibet Railway under the background of climate change[J]. Journal of Glaciology and Geocryology, 2014, 36(5):1122-1130.[刘明浩, 孙志忠, 牛富俊, 等. 气候变化背景下青藏铁路沿线多年冻土变化特征研究[J]. 冰川冻土, 2014, 36(5):1122-1130.] [38] Jorgenson M T, Racine C H, Walters J C, et al. Permafrost degradation and ecological changes associated with a warmingclimate in central Alaska[J]. Climatic change, 2001, 48(4):551-579. [39] Gao Zeyong, Wang Yibo, Liu Guohua, et al. Response of soil moisture within the permafrost active layer to different alpine ecosystems[J]. Journal of Glaciology and Geocryology, 2014, 36(4):1002-1010.[高泽永, 王一博, 刘国华, 等. 多年冻土区活动层土壤水分对不同高寒生态系统的响应[J]. 冰川冻土, 2014, 36(4):1002-1010.] [40] Walker D A, Jia G J, Epstein H E, et al. Vegetation-soil-thaw-depth relationships along a low-arctic bioclimate gradient, Alaska:Synthesis of information from the ATLAS studies[J]. Permafrost and Periglacial Processes, 2003, 14(2):103-123. |