[1] Vaughan D G, Comiso J C, Allison I, et al. Observations: cryosphere[M]//Stocker T F, Qin Dahe, Plattner G K, et al. Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press, 2013: 317-382. [2] Scherler D, Bookhagen B, Strecker M R. Spatially variable response of Himalayan glaciers to climate change affected by debris cover[J]. Nature Geoscience, 2011, 4(3): 156-159. [3] Yao Tandong, Thompson L, Yang Wei, et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings[J]. Nature Climate Change, 2012, 2(9): 663-667. [4] Gardner A S, Moholdt G, Cogley J G, et al. A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009[J]. Science, 2013, 340(6134): 852-857. [5] Kaser G, Großhauser M, Marzeion B. Contribution potential of glaciers to water availability in different climate regimes[J]. Proceedings of the National Academy of Sciences, 2010, 107(47): 20223-20227. [6] Radi'c V, Bliss A, Beedlow A C, et al. Regional and global projections of twenty-first century glacier mass changes in response to climate scenarios from global climate m' V, Bliss A, Beedlow A C, et al. Regional and global projections of twenty-first century glacier mass changes in response to climate scenarios from global climate models[J]. Climate Dynamics, 2013, 42(1/2): 37-58. [7] Zhang Tong, Xiao Cunde, Colgan W, et al. Observed and modelled ice temperature and velocity along the main flowline of East Rongbuk Glacier, Qomolangma (Mount Everest), Himalaya[J]. Journal of Glaciology, 2013, 59(215): 438-448. [8] Zekollari H, Fürst J J, Huybrechts P. Modelling the evolution of Vadret da Morteratsch, Switzerland, since the Little Ice Age and into the future[J]. Journal of Glaciology, 2014, 60(224): 1155-1168. [9] Zhu Meilin, Yao Tandong, Yang Wei, et al. Ice volume and characteristics of sub-glacial topography of the Zhadang Glacier, Nyainqêntanglha Range[J]. Journal of Glaciology and Geocryology, 2014, 36(2): 268-277.[朱美林, 姚檀栋, 杨威, 等. 念青唐古拉山扎当冰川冰储量估算及冰下地形特征分析[J]. 冰川冻土, 2014, 36(2): 268-277.] [10] Zhu Dayun, Tian Lide, Wang Jianli, et al. The Qiangtang Glacier No. 1 in the middle of the Tibetan Plateau: Depth sounded by using GPR and volume estimated[J]. Journal of Glaciology and Geocryology, 2014, 36(2): 278-285.[朱大运, 田立德, 王建力, 等. 青藏高原中部双湖羌塘1号冰川厚度特征及冰储量估算[J]. 冰川冻土, 2014, 36(2): 278-285.] [11] Moore J C, P?lli A, Ludwig F, et al. High-resolution hydrothermal structure of Hansbreen, Spitsbergen, mapped by ground-penetrating radar[J]. Journal of Glaciology, 1999, 45(151): 524-532. [12] Pattyn F. Transient glacier response with a higher-order numerical ice-flow model[J]. Journal of Glaciology, 2002, 48(162): 467-477. [13] Flowers G E, Roux N, Pimentel S, et al. Present dynamics and future prognosis of a slowly surging glacier[J]. The Cryosphere, 2011, 5(1): 299-313. [14] Harbor J M. Numerical modeling of the development of U-shaped valleys by glacial erosion[J]. Geological Society of America Bulletin, 1992, 104(10): 1364-1375. [15] Harbor J M. Development of glacial-valley cross sections under conditions of spatially variable resistance to erosion[J]. Geomorphology, 1995, 14(2): 99-107. [16] Nye J F. The flow of a glacier in a channel of rectangular, elliptic or parabolic cross-section[J]. Journal of Glaciology, 1965, 5(41): 661-690. [17] Adhikari S, Marshall S J. Parameterization of lateral drag in flowline models of glacier dynamics[J]. Journal of Glaciology, 2012, 58(212): 1119-1132. [18] Yang Zhenniang. Glacier water resources of Qilian Mountains[J]. Journal of Glaciology and Geocryology, 1988, 10(1): 36-46.[杨针娘. 祁连山冰川水资源[J]. 冰川冻土, 1988, 10(1): 36-46.] [19] Tian Hongzhen, Yang Taibao, Liu Qinping. Climate change and glacier area shrinkage in the Qilian Mountains, China, from 1956 to 2010[J]. Annals of Glaciology, 2014, 55(66): 187-197. [20] Sun Weijun, Qin Xiang, Ren Jiawen, et al. The surface energy budget in the accumulation zone of the Laohugou Glacier No.12 in the Western Qilian Mountains, China, in summer 2009[J]. Arctic, Antarctic, and Alpine Research, 2012, 44(3): 296-305. [21] Sun Weijun, Li Yan, Qin Xiang, et al. Characteristics of micrometeorological elements in accumulation zone of Laohugou Glacier No.12 in Qilian Mountains[J]. Plateau Meteorology, 2013, 32(6): 1673-1681.[孙维君, 李艳, 秦翔, 等. 祁连山老虎沟12号冰川积累区微气象特征[J]. 高原气象, 2013, 32(6): 1673-1681.] [22] Liu Yushuo, Qin Xiang, Du Wentao, et al. The movement features analysis of Laohugou Glacier No.12 in Qilian Mountains[J]. Sciences in Cold and Arid Regions, 2011, 3(2): 119-123. [23] Huang Maohuan, Wang Zhongxiang, Ren Jiawen. On the temperature regime of continental-type glaciers in China[J]. Journal of Glaciology, 1982, 28(98): 117-128. [24] Qin Xiang, Chen Jizu, Wang Shengjie, et al. Reconstruction of surface air temperature in a glaciated region in the western Qilian Mountains, Tibetan Plateau, 1957-2013 and its variation characteristics[J]. Quaternary International, 2015, 371: 22-30. [25] Du Wentao, Qin Xiang, Liu Yushuo, et al. Variation of the Laohugou Glacier No.12 in the Qilian Mountains[J]. Journal of Glaciology and Geocryology, 2008, 30(3): 373-379.[杜文涛, 秦翔, 刘宇硕, 等. 1958-2005年祁连山老虎沟12号冰川变化特征研究[J]. 冰川冻土, 2008, 30(3): 373-379.] [26] Sun Weijun, Qin Xiang, Du Wentao, et al. Ablation modeling and surface energy budget in the ablation zone of Laohugou Glacier No.12, western Qilian mountains, China[J]. Annals of Glaciology, 2014, 55(66): 111-120. [27] Chen Jizu, Qin Xiang, Wu Jinkui, et al. Simulating the energy and mass balances on the Laohugou Glacier No.12 in the Qilian Mountains[J]. Journal of Glaciology and Geocryology, 2014, 36(1): 38-47.[陈记祖, 秦翔, 吴锦奎, 等. 祁连山老虎沟12号冰川表面能量和物质平衡模拟[J]. 冰川冻土, 2014, 36(1): 38-47.] [28] Svensson H. Is the cross-section of a glacial valley a parabola?[J]. Journal of Glaciology, 1959, 3(25): 362-363. [29] Li Yingkui, Liu Gengnian, Cui Zhijiu. Glacial valley cross-profile morphology, Tian Shan Mountains, China[J]. Geomorphology, 2001, 38(1): 153-166. [30] Li Yingkui, Liu Gengnian, Cui Zhijiu. The morphological character and paleo-climate indication of the cross section of glacial valleys[J]. Journal of Basic Science and Engineering, 1999, 7(2): 163-170.[李英奎, 刘耕年, 崔之久. 冰川槽谷横剖面形态特征的古环境标志再探讨[J]. 应用基础与工程科学学报, 1999, 7(2): 163-170.] [31] Graf W L. The geomorphology of the glacial valley cross section[J]. Arctic and Alpine Research, 1970: 303-312. [32] Gudmundsson G H, Iken A, Funk M. Measurements of ice deformation at the confluence area of Unteraargletscher, Bernese Alps, Switzerland[J]. Journal of Glaciology, 1997, 43(145): 548-556. [33] Gudmundsson G H. A three-dimensional numerical model of the confluence area of Unteraargletscher, Bernese Alps, Switzerland[J]. Journal of Glaciology, 1999, 45(150): 219-230. [34] Li Yingkui, Liu Gengnian. Discussion on the cross section features of glacial valley[J]. Journal of Glaciology and Geocryology, 2000, 22(2): 171-177.[李英奎, 刘耕年. 冰川槽谷横剖面形态特征探析[J]. 冰川冻土, 2000, 22(2): 171-177.] [35] Zhang Tong, Xiao Cunde, Qin Xiang, et al. Ice thickness observation and landform study of East Rongbuk Glacier, Mt. Qomolangma[J]. Journal of Glaciology and Geocryology, 2012, 34(5): 1059-1066.[张通, 效存德, 秦翔, 等. 珠穆朗玛峰东绒布冰川厚度测量与地形特征分析[J]. 冰川冻土, 2012, 34(5): 1059-1066.] [36] Hirano M, Aniya M. A rational explanation of cross-profile morphology for glacial valleys and of glacial valley development[J]. Earth Surface Processes and Landforms, 1988, 13(8): 707-716. [37] Hallet B. A theoretical model of glacial abrasion[J]. Journal of Glaciology, 1979, 23: 39-50. [38] Beaud F, Flowers G E, Pimentel S. Seasonal-scale abrasion and quarrying patterns from a two-dimensional ice-flow model coupled to distributed and channelized subglacial drainage[J]. Geomorphology, 2014, 219: 176-191. [39] Wu Zhen, Zhang Shiqiang, Liu Shiyin, et al. Structural characteristics of the No.12 Glacier in Laohugou Valley, Qilian Mountain based on the ground penetrating radar combined with FDTD simulation[J]. Advances in Earth Science, 2011, 26(6): 631-641.[武震, 张世强, 刘时银, 等. 祁连山老虎沟12号冰川冰内结构特征分析[J]. 地球科学进展, 2011, 26(6): 631-641.] |