[1] Ma Wei, Jin Huijun. Permafrost on a warming planet: Summary review of the Ninth International Conference on Permafrost in 2008[J]. Journal of Glaciology and Geocryology, 2008, 30(5): 843-854. [马巍, 金会军. 正在变暖的地球上的多年冻土——2008年第九届国际冻土大会(NICOP)综述[J]. 冰川冻土, 2008, 30(5): 843-854.][2] Zhang Tingjun. Progress in global permafrost and climate change studies [J]. Quaternary Sciences, 2012, 32(1): 27-38. [张廷军. 全球多年冻土与气候变化研究进展[J]. 第四纪研究, 2012, 32(1): 27-38.][3] Wu Q, Zhang T. Recent permafrost warming on the Qinghai-Tibetan Plateau[J]. Journal of Geophysical Research, 2008, 113(D13), doi: 10.1029/2007JD009539.[4] Romanovsky V E, Smith S L, Christiansen H H. Permafrost thermal state in the polar Northern Hemisphere during the international polar year 2007 2009: A synthesis[J]. Permafrost and Periglacial Processes, 2010, 21(2): 106-116.[5] Zhao L, Wu Q, Marchenko S S, et al. Thermal state of permafrost and active layer in Central Asia during the International Polar Year[J]. Permafrost and Periglacial Processes, 2010, 21(2): 198-207.[6] Wu Q, Zhang T. Changes in active layer thickness over the Qinghai-Tibetan Plateau from 1995 to 2007[J]. Journal of Geophysical Research, 2010, 115(D9), doi: 10.1029/2009JD012974.[7] Frauenfeld O W, Zhang T, Barry R G, et al. Interdecadal changes in seasonal freeze and thaw depths in Russia[J]. Journal of Geophysical Research, 2004, 109(D5), doi: 10.1029/2003JD004245.[8] Wang Junfeng, Wang Genxu, Wu Qingbai. A study of CO2 fluxes from the high-cold swamp meadows with different degradation on the hinterland of Tibetan Plateau during growing season [J]. Journal of Glaciology and Geocryology, 2008, 30(3), 408-414. [王俊峰, 王根绪, 吴青柏. 青藏高原腹地不同退化程度高寒沼泽草甸生长季节CO2排放通量及其主要环境控制因子研究[J]. 冰川冻土, 2008, 30(3): 408-414.][9] Zhang Y, Chen W, Riseborough D W. Transient projections of permafrost distribution in Canada during the 21st century under scenarios of climate change [J]. Global and Planetary Change, 2008, 60(3-4): 443-456.[10] Zhang Y, Chen W, Riseborough D W. Disequilibrium response of permafrost thaw to climate warming in Canada over 1850 2100[J]. Geophysical Research Letters, 2008, 35(2), doi: 10.1029/2007GL032117.[11] Ping C L, Michaelson G J, Jorgenson M T, et al. High stocks of soil organic carbon in the North American Arctic region[J]. Nature Geoscience, 2008, 1(9): 615-619.[12] Hugelius G, Tarnocai C, Broll G, et al. The Northern Circumpolar Soil Carbon Database: spatially distributed datasets of soil coverage and soil carbon storage in the northern permafrost regions [J]. Earth System Science Data Discussions, 2012, 5: 707-733.[13] Cheng G, Wu T. Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau[J]. Journal of Geophysical Research, 2007, 112(F2), doi: 10.1029/2006JF000631.[14] Wang Jiaoyue, Song Changchun, Wang Xianwei, et al. Progress in the study of effect of freeze-thaw processes on the organic carbon pool and microorganisms in soils [J]. Journal of Glaciology and Geocryology, 2011, 33(2): 442-452. [王娇月, 宋长春, 王宪伟, 等. 冻融作用对土壤有机碳库及微生物的影响研究进展[J]. 冰川冻土, 2011, 33(2): 442-452.][15] Schuur E A G, Vogel J G, Crummer K G, et al. The effect of permafrost thaw on old carbon release and net carbon exchange from tundra[J]. Nature, 2009, 459: 556-559.[16] Zhang T, Barry R G, Knowles K, et al. Statistics and characteristics of permafrost and ground-ice distribution in the Northern Hemisphere[J]. Polar Geography, 2008, 31(1-2): 47-68.[17] Tarnocai C, Canadell J G, Schuur E A G, et al. Soil organic carbon pools in the northern circumpolar permafrost region[J]. Global Biogeochemical Cycles, 2009, 23(2), doi: 10.1029/2008GB003327.[18] Schaefer K, Zhang T, Bruhwiler L, et al. Amount and timing of permafrost carbon release in response to climate warming[J]. Tellus B, 2011, 63(2): 165-180.[19] Liu W, Chen S, Qin X, et al. Storage, patterns, and control of soil organic carbon and nitrogen in the northeastern margin of the Qinghai-Tibetan Plateau[J]. Environmental Research Letters, 2012, 7(3), doi: 10.1088/1748-9326/7/3/035401.[20] Waldrop M P, Harden J W, Turetsky M R, et al. Bacterial and enchytraeid abundance accelerate soil carbon turnover along a lowland vegetation gradient in interior Alaska [J]. Soil Biology and Biochemistry, 2012, 50: 188-198.[21] Zhuang Q, He J, Lu Y, et al. Carbon dynamics of terrestrial ecosystems on the Tibetan Plateau during the 20th century: an analysis with a process-based biogeochemical model[J]. Global Ecology and Biogeography, 2010, 19(5): 649-662.[22] Schuur E A G, Bockheim J, Canadell J G, et al. Vulnerability of permafrost carbon to climate change: Implications for the global carbon cycle [J]. BioScience, 2008, 58(8): 701-714.[23] Wang Jie, Ye Baisheng, Zhang Shiqiang, et al. Changing features of CO2 fluxes in alpine meadow in the upper reaches of Shule River, Qilianshan[J]. Journal of Glaciology and Geocryology, 2011, 33(3): 646-653. [王杰, 叶柏生, 张世强, 等. 祁连山疏勒河上游高寒草甸CO2通量变化特征[J]. 冰川冻土, 2011, 33(3): 646-653.][24] Fang Jingyun, Liu Guohua, Xu Songling. Carbon pool of Chinese terrestrial ecosystem [C]//Wang Gencheng, Wen Yupu. Monitoring of Greenhouse Gas Concentration and Emission and Relevant Processes. Beijing: China Environmental Science Press, 1996: 109-128. [方精云, 刘国华, 徐嵩龄. 中国陆地生态系统的碳库[C]//王庚辰, 温玉璞. 温室气体浓度和排放监测及相关过程. 北京: 中国环境科学出版社, 1996: 109-128.][25] Wang Genxu, Cheng Guodong, Shen Yongping. Soil organic carbon pool of grasslands on the Tibetan Plateau and its global implication [J]. Journal of Glaciology and Geocryology, 2002, 24(6): 693-700. [王根绪, 程国栋, 沈永平. 青藏高原草地土壤有机碳库及其全球意义[J]. 冰川冻土, 2002, 24(6): 693-700.][26] Gao Junqin, Ouyang Hua, Zhang Feng, et al. Characteristics of spatial distribution of soil organic carbon in Zoige wetland[J]. Ecology and Environment, 2007, 16(6): 1723-1727. [高俊琴, 欧阳华, 张峰, 等. 若尔盖高寒湿地表层土壤有机碳空间分布特征[J]. 生态环境, 2007, 16(6): 1723-1727.][27] Wu X, Zhao L, Chen M, et al. Soil organic carbon and its relationship to vegetation communities and soil properties in permafrost areas of the central western Qinghai-Tibet Plateau, China[J]. Permafrost and Periglacial Processes, 2012, 23(2): 162-169.[28] Wu Jichun, Sheng Yu, Yu Hui, et al. Permafrost in the Middle-East section of Qilian Mountains(Ⅱ): Characters of permafrost[J]. Journal of Glaciology and Geocryology, 2007, 29(3): 426-432. [吴吉春, 盛煜, 于晖, 等. 祁连山中东部的冻土特征(Ⅱ): 多年冻土特征[J]. 冰川冻土, 2007, 29(3): 426-432.][29] Wu Jinkui, Yang Qiyue, Ding Yongjian, et al. Variations and simulation of stable isotopes in precipitation in the Heihe River Basin[J], Environmental Science, 2011, 32(7): 1857-1866. [吴锦奎, 杨淇越, 丁永建, 等. 黑河流域大气降水稳定同位素变化及模拟[J]. 环境科学, 2011, 32(7): 1857-1866.][30] Liu Nanwei, Yang Shihong, Liu Hongjie, et al. Physical Geography [M]. Beijing: Science Press, 2007: 551-556.[31] Zsolnay A. Dissolved organic matter: artefacts, definitions, and functions[J]. Geoderma, 2003, 113(3-4): 187-209.[32] Wagner D, Lipski A, Embacher A, et al. Methane fluxes in permafrost habitats of the Lena Delta: effects of microbial community structure and organic matter quality[J]. Environmental Microbiology, 2005, 7(10): 1582-1592.[33] Wagner D, Gattinger A, Embacher A, et al. Methanogenic activity and biomass in Holocene permafrost deposits of the Lena Delta, Siberian Arctic and its implication for the global methane budget [J]. Global Change Biology, 2007, 13(5): 1089-1099.[34] Soil Survey Staff. Soil Survey Investigations Report No. 42: Soil Survey Laboratory Manual, Version 3.0[Z]. Lincoln, NE: USDA-NRCS-NSSC, 1996.[35] Yue Guangyang, Zhao Lin, Zhao Yonghua, et al. Research advances of grassland ecosystem CO2 flux on Qinghai-Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2010, 32(1): 166 174. [岳广阳, 赵林, 赵拥华, 等. 青藏高原草地生态系统碳通量研究进展[J]. 冰川冻土, 2010, 32(1): 166-174.][36] Johnson K D, Harden J, McGuire A D, et al. Soil carbon distribution in Alaska in relation to soil-forming factors[J]. Geoderma, 2011, 167-168: 71-84.[37] Li Tiantian, Ji Hongbing, Sun Yuanyuan, et al. Advances in researches on soil organic carbon storages and affecting factors in China [J]. Journal of Capital Normal University(Natural Science Edition), 2007, 28(1): 93-97. [李甜甜, 季宏兵, 孙媛媛, 等. 我国土壤有机碳储量及影响因素研究进展[J]. 首都师范大学学报(自然科学版), 2007, 28 (1): 93-97.][38] Cannone N, Wagner D, Hubberten H W, et al. Biotic and abiotic factors influencing soil properties across a latitudinal gradient in Victoria Land, Antarctica[J]. Geoderma, 2008, 144(1-2): 50-65.[39] Harden J W, Koven C D, Ping C L, et al. Field information links permafrost carbon to physical vulnerabilities of thawing[J]. Geophysical Research Letters, 2012, 39(15), doi: 10.1029/2012GL051958.[40] Ai Haijian. Analysis of affecting factors of soil water-retention and porositility[J]. Agricultural Research in the Arid Areas, 2002, 20(3): 75-79. [艾海舰. 土壤持水性及孔性的影响因素浅析[J]. 干旱地区农业研究, 2002, 20(3): 75-79.] |