[1] Pachauri R K, Reisinger A. Climate Change 2007: Synthesis Report. Contribution of Working Groups Ⅰ, Ⅱ and Ⅲ to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva, Switzerland: IPCC, 2008: 1-104.[2] Kintisch E. Global warming: Projections of climate change go from bad to worse, scientists report [J]. Science, 2009, 323(5921): 1546-1547.[3] Philippot L, Tscherko D, Bru D, et al. Distribution of high bacterial taxa across the chronosequence of two alpine glacier forelands[J]. Microbial Ecology, 2011, 61(2): 303-312.[4] Caccianiga M, Andreis C. Pioneer herbaceous vegetation on glacier forelands in the Italian Alps[J]. Phytocoenologia, 2004, 34(1): 55-89.[5] Hodkinson I D, Coulson S J, Webb N R. Invertebrate community assembly along proglacial chronosequences in the high Arctic[J]. Journal of Animal Ecology, 2004, 73(3): 556-568.[6] Frenot Y, Gloaguen J C, Cannavacciuolo M, et al. Primary succession on glacier forelands in the subantarctic Kerguelen Islands[J]. Journal of Vegetation Science, 1998, 9(1): 75-84.[7] del Moral R, Wood D M. Early primary succession on the volcano Mount St. Helens [J]. Journal of Vegetation Science, 1993, 4(2): 223-234.[8] Schütte U M E, Abdo Z, Bent S J, et al. Bacterial succession in a glacier foreland of the High Arctic[J]. The ISME Journal, 2009, 3(11): 1258-1268.[9] Sigler W V, Zeyer J. Microbial diversity and activity along the forefields of two receding glaciers [J]. Microbial Ecology, 2002, 43(4): 397-407.[10] Yue Jun, Liu Guangxiu, Zhang Gaosen, et al. Changes in soil properties and culturable bacteria diversity in Zhadang Glacier foreland [J]. Journal of Glaciology and Geocryology, 2010, 32(6): 1180-1185. [岳君, 刘光琇, 章高森, 等. 念青唐古拉山扎当冰川退缩前沿土壤性质与可培养细菌多样性变化[J]. 冰川冻土, 2010, 32(6): 1180-1185.][11] Liu G X, Hu P, Zhang W, et al. Variations in soil culturable bacteria communities and biochemical characteristics in the Dongkemadi glacier forefield along a chronosequence[J]. Folia Microbiologica, 2012, 57(6): 485-494.[12] Zhang Gaosen, Zhang Wei, Liu Guangxiu, et al. Distribution of aerobic heterotrophic bacteria managed by environment factors in glacier foreland[J]. Journal of Glaciology and Geocryology, 2012, 34(4): 965-971. [章高森, 张威, 刘光琇, 等. 环境因素主导着冰川前沿裸露地好氧异养细菌群落的分布[J]. 冰川冻土, 2012, 34(4): 965-971.][13] Sigler W V, Crivii S, Zeyer J. Bacterial succession in glacial forefield soils characterized by community structure, activity and opportunistic growth dynamics [J]. Microbial Ecology, 2002, 44(4): 306-316.[14] Nemergut D R, Anderson S P, Cleveland C C, et al. Microbial community succession in an unvegetated, recently deglaciated soil [J]. Microbial Ecology, 2007, 53(1): 110-122.[15] Schütte U M E, Abdo Z, Foster J, et al. Bacterial diversity in a glacier foreland of the high Arctic[J].Molecular Ecology, 2010, 19(S1): 54-66.[16] Wu X, Zhang W, Liu G, et al. Bacterial diversity in the foreland of the Tianshan No.1 glacier, China[J]. Environmental Research Letters, 2012, 7(1), doi: 10.1088/1748-9326/7/1/014038.[17] Foght J, Aislabie J, Turner S, et al. Culturable bacteria in subglacial sediments and ice from two Southern Hemisphere glaciers[J]. Microbial Ecology, 2004, 47(4): 329-340.[18] Shivaji S, Pratibha M S, Sailaja B, et al. Bacterial diversity of soil in the vicinity of Pindari glacier, Himalayan mountain ranges, India, using culturable bacteria and soil 16S rRNA gene clones[J]. Extremophiles, 2011, 15(1): 1-22.[19] Fujiyoshi M, Yoshitake S, Watanabe K, et al. Successional changes in ectomycorrhizal fungi associated with the polar willow Salix polaris in a deglaciated area in the High Arctic, Svalbard[J].Polar Biology, 2011, 34(5): 667-673. [20] Nara K. Ectomycorrhizal networks and seedling establishment during early primary succession [J]. New Phytologist, 2006, 169(1): 169-178.[21] Blaalid R, Carlsen T, Kumar S, et al. Changes in the root-associated fungal communities along a primary succession gradient analysed by 454 pyrosequencing[J]. Molecular Ecology, 2012, 21(8): 1897-1908.[22] Jumpponen A. Soil fungal community assembly in a primary successional glacier forefront ecosystem as inferred from rDNA sequence analyses [J]. New Phytologist, 2003, 158(3): 569-578.[23] Oehl F, Schneider D, Sieverding E, et al. Succession of arbuscular mycorrhizal communities in the foreland of the retreating Morteratsch glacier in the Central Alps[J]. Pedobiologia, 2011, 54(5-6): 321-331.[24] Zumsteg A, Luster J, Göransson H, et al. Bacterial, archaeal and fungal succession in the forefield of a receding glacier[J]. Microbial Ecology, 2012, 63(3): 552-564.[25] Nicol G W, Tscherko D, Embley T M, et al. Primary succession of soil Crenarchaeota across a receding glacier foreland[J]. Environmental Microbiology, 2005, 7(3): 337-347.[26] Yoshitake S, Uchida M, Nakatsubo T, et al. Characterization of soil microflora on a successional glacier foreland in the high Arctic on Ellesmere Island, Nunavut, Canada using phospholipid fatty acid analysis[J]. Polar Bioscience, 2006, 19: 73-84.[27] Wang Xiaoxia, Zhang Tao, Sun Jian, et al. Ecological characterization of soil microflora in primary succession across glacier forefield: a case study of Glacier No.1 at the headwaters of Vrümqi River [J]. Acta Ecologica Sinica, 2010, 30(23): 6563-6570. [王晓霞, 张涛, 孙建, 等. 冰川前缘土壤微生物原生演替的生态特征—-以乌鲁木齐河源1号冰川为例[J]. 生态学报, 2010, 30(23): 6563-6570.][28] Bekku Y, Kume A, Nakatsubo T, et al. Microbial biomass in relation to primary succession on Arctic deglaciated moraines[J]. Polar Bioscience, 1999, 12: 47-53.[29] Kaštovská K, Elster J, Stibal M, et al. Microbial assemblages in soil microbial succession after glacial retreat in Svalbard(high Arctic) [J]. Microbial Ecology, 2005, 50(3): 396-407.[30] Göransson H, Olde Venterink H, Bååth E. Soil bacterial growth and nutrient limitation along a chronosequence from a glacier forefield[J]. Soil Biology and Biochemistry, 2011, 43(6): 1333-1340.[31] Jangid K, Williams M A, Franzluebbers A J, et al. Relative impacts of land-use, management intensity and fertilization upon soil microbial community structure in agricultural systems [J]. Soil Biology and Biochemistry, 2008, 40(11): 2843-2853.[32] Millet M, Wortham H, Sanusi A, et al. Low molecular weight organic acids in fogwater in an urban area: Strasbourg (France)[J]. Science of the Total Environment, 1997, 206(1): 57-65.[33] Männistö M K, Tiirola M, Häggblom M M. Bacterial communities in Arctic fjelds of Finnish Lapland are stable but highly pH-dependent [J]. FEMS Microbiology Ecology, 2007, 59(2): 452-465.[34] Chong C W, Convey P, Pearce D A, et al. Assessment of soil bacterial communities on Alexander Island (in the maritime and continental Antarctic transitional zone)[J]. Polar Biology, 2012, 35(3): 387-399.[35] Zhang Yongmei, Zhou Guoyi, Wu Ning. A review of studies on soil enzymology[J]. Journal of Tropical and Subtropical Botany, 2004, 12(1): 83-90. [张咏梅, 周国逸, 吴宁. 土壤酶学的研究进展[J]. 热带亚热带植物学报, 2004, 12(1): 83-90.][36] Caldwell B A. Enzyme activities as a component of soil biodiversity: A review[J]. Pedobiologia, 2005, 49(6): 637-644.[37] Tscherko D, Rustemeier J, Richter A, et al. Functional diversity of the soil microflora in primary succession across two glacier forelands in the Central Alps[J]. European Journal of Soil Science, 2003, 54(4): 685-696.[38] Strauss S L, Garcia-Pichel F, Day T A. Soil microbial carbon and nitrogen transformations at a glacial foreland on Anvers Island, Antarctic Peninsula[J]. Polar Biology, 2012, 35(10): 1459-1471.[39] Chapin F S, Walker L R, Fastie C L, et al. Mechanisms of primary succession following deglaciation at Glacier Bay, Alaska[J]. Ecological Monographs, 1994, 64(2): 149-175.[40] Schmidt S K, Reed S C, Nemergut D R, et al. The earliest stages of ecosystem succession in high-elevation (5000 metres above sea level), recently deglaciated soils [J]. Proceedings of the Royal Society B: Biological Sciences, 2008, 275(1653): 2793-2802.[41] Duc L, Noll M, Meier B E, et al. High diversity of diazotrophs in the forefield of a receding alpine glacier[J]. Microbial Ecology, 2009, 57(1): 179-190.[42] Brankatschk R, Töwe S, Kleineidam K, et al. Abundances and potential activities of nitrogen cycling microbial communities along a chronosequence of a glacier forefield[J]. The ISME Journal, 2011, 5(6): 1025-1037.[43] Deiglmayr K, Philippot L, Tscherko D, et al. Microbial succession of nitrate-reducing bacteria in the rhizosphere of Poa alpina across a glacier foreland in the Central Alps[J]. Environmental Microbiology, 2006, 8(9): 1600-1612.[44] Kandeler E, Deiglmayr K, Tscherko D, et al. Abundance of narG, nirS, nirK, and nosZ Genes of denitrifying bacteria during primary successions of a glacier foreland[J]. Applied and Environmental Microbiology, 2006, 72(9): 5957-5962.[45] Höfferle Š, Nicol G W, Pal L, et al. Ammonium supply rate influences archaeal and bacterial ammonia oxidizers in a wetland soil vertical profile[J]. FEMS Microbiology Ecology, 2010, 74(2): 302-315.[46] Nicol G W, Leininger S, Schleper C, et al. The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria[J]. Environmental Microbiology, 2008, 10(11): 2966-2978.[47] Zhang L M, Wang M, Prosser J I, et al. Altitude ammonia-oxidizing bacteria and archaea in soils of Mount Everest [J]. FEMS Microbiology Ecology, 2009, 70(2): 208-217.[48] Zhang Guofei, Li Zhongqin, Wang Wenbin, et al. Change processes and characteristics of mass balance of the Vrümqi Glacier No.1 at the headwaters of the Vrümqi River, Tianshan Mountains, during 1959-2009[J]. Journal of Glaciology and Geocryology, 2012, 34(6): 1301-1309. [张国飞, 李忠勤, 王文彬, 等. 天山乌鲁木齐河源1号冰川1959-2009年物质平衡变化过程及特征研究[J]. 冰川冻土, 2012, 34(6): 1301-1309.][49] Sun Weijun, Qin Xiang, Ren Jiawen, et al. Surface energy balance in the accumulation zone of the Laohugou Glacier No.12 in the Qilian Mountains during ablation period[J]. Journal of Glaciology and Geocryology, 2011, 33(1): 38-46. [孙维君, 秦翔, 任贾文, 等. 祁连山老虎沟12号冰川积累区消融期能量平衡特征[J]. 冰川冻土, 2011, 33(1): 38-46.][50] Hu Ping, Wu Xiukun, Li Shiweng, et al. Progress of studies on permafrost microbial ecology in the past 10 years [J]. Journal of Glaciology and Geocryology, 2012, 34(3): 732-739. [胡平, 伍修锟, 李师翁, 等. 近10 a来冻土微生物生态学研究进展[J]. 冰川冻土, 2012, 34(3): 732-739.] |