[1] Lu Ling, Li Xin, Cheng Guodong, et al. Analysis on the landscape structure of the Heihe River Basin, Northwest China[J]. Acta Ecologica Sinica, 2001, 21(8): 1217-1224. [卢玲, 李新, 程国栋, 等. 黑河流域景观结构分析[J]. 生态学报, 2001, 21(8): 1217-1224.][2] Fang Chuanglin, Bu Weina, Bao Chao. Options of water-ecology-economy balanced development and water usage analysis in the Heihe Watershed [J]. Acta Ecologica Sinica, 2004, 24(8): 1700-1707. [方创琳, 步伟娜, 鲍超. 黑河流域水-生态-经济协调发展方案及用水效益[J]. 生态学报, 2004, 24(8): 1700-1707.][3] Zhao C Y, Qi P C, Feng Z D. Spatial modeling of the variability of the soil moisture regime at the landscape scale in the southern Qilian Mountains, China[J]. Hydrology and Earth System Sciences Discussions, 2009, 6: 6335-6358.[4] Jin Xiaomei. The variability of natural vegetation area in the Heihe river basin, north-west China[J]. Earth Science Frontiers, 2005, 12(Suppl.): 166-169. [金晓媚. 黑河流域天然植被的面积变化研究[J]. 地学前缘, 2005, 12(增): 166-169.][5] Ding Lingling, Qi Biao, Shang Zhanhuan, et al. The characteristics of soil microorganism quantity under different alpine grasslands in Eastern Qilian Mountain [J]. Journal of Agro-Environment Science, 2007, 26(6): 2104-2111. [丁玲玲, 祁彪, 尚占环, 等. 东祁连山不同高寒草地型土壤微生物数量分布特征研究[J]. 农业环境科学学报, 2007,26(6): 2104-2111.][6] Zhang Di, Zhang Yuxin, Qu Laiye, et al. Effects of altitude on soil microbial community in Quercus liaotungensisforest [J]. Chinese Journal of Applied Ecology, 2012, 23(8): 2041-2048. [张地, 张育新, 曲来叶, 等. 海拔对辽东栎林地土壤微生物群落的影响[J]. 应用生态学报, 2012, 23(8): 2041-2048.][7] Bryant J A, Lamanna C, Morlon H, et al. Microbes on mountainsides: Contrasting elevational patterns of bacterial and plant diversity [J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105: 11505-11511.[8] Wang J, Soininen J, Zhang Y, et al. Contrasting patterns in elevational diversity between microorganisms and macroorganisms[J]. Journal of Biogeography, 2011, 38: 595-603.[9] Shen C, Xiong J, Zhang H, et al. Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain [J]. Soil Biology and Biochemistry, 2013, 57: 204-211.[10] Fierer N, Mccain C M, Meir P, et al. Microbes do not follow the elevational diversity patterns of plants and animals [J]. Ecology, 2011, 92(4): 797-804.[11] Yu X, Yu D, Lu Z, et al. A new mechanism of invader success: Exotic plant inhibits natural vegetation restoration by changing soil microbe community[J]. Chinese Science Bulletin, 2005, 50(11): 1105-1112.[12] Chu H, Neufeld J D, Walker V K, et al. The influence of vegetation type on the dominant soil bacteria, archaea, and fungi in a low Arctic tundra landscape[J]. Soil Science Society of America Journal, 2011, 75(5): 1756-1765.[13] Nielsen U N, Osler G H R, Campbell C D, et al. The influence of vegetation type, soil properties and precipitation on the composition of soil mite and microbial communities at the landscape scale [J]. Journal of Biogeography, 2010, 37: 1317-1328.[14] Xu Shasha, Sun Guojun, Liu Huiming, et al. The relationship between riparian vegetation and environmental factors in Heihe River Basin[J]. Acta Ecologica Sinica, 2011, 31(9): 2421-2429. [许莎莎, 孙国钧, 刘慧明, 等. 黑河河岸植被与环境因子间的相互作用[J]. 生态学报, 2011, 31(9): 2421-2429.][15] Ding Songshuang, Su Peixi. Altitudinal variation characteristics of the plant community on the upper reaches of Heihe River in the Qilian Mountains [J]. Journal of Glaciology and Geocryology, 2010, 32(4): 829-836. [丁松爽, 苏培玺. 黑河上游祁连山区植物群落随海拔生境的变化特征[J]. 冰川冻土, 2010, 32(4): 829-836.][16] Liu G X, Hu P, Zhang W, et al. Variations in soil culturable bacteria communities and biochemical characteristics in the Dongkemadi glacier forefield along a chronosequence[J].Folia Microbiologica, 2012, 57: 485-494.[17] Qian P, Schoenaru J J, Karamanos R E. Simultaneous extraction of available phosphorus and potassium with a new soil test: A modification of Kelowna extraction[J].Communications in Soil Science and Plant Analysis, 1994, 25: 627-635.[18] Dunbar J, Takala S, Barns S M, et al. Levels of bacterial community diversity in four arid soils compared by cultivation and 16S rRNA gene cloning[J]. Applied and Environmental Microbiology, 1999, 65(4): 1662-1669.[19] Guo Bin, Wu Xiaolei, Qian Yi. Approaches for increasing the culturability of microorganisms [J]. Acta Microbiologica Sinica, 2006, 46(3): 504-507. [郭斌, 吴晓磊, 钱易. 提高微生物可培养性的方法和措施[J]. 微生物学报, 2006, 46(3): 504-507.][20] Zhang Baogui, Zhang Wei, Liu Guangxiu, et al. Effect of freeze-thaw cycles on the soil bacterial communities in different ecosystems soils in the Tibetan Plateau [J]. Journal of Glaciology and Geocryology, 2012, 34(6): 1499-1507. [张宝贵, 张威, 刘光琇, 等. 冻融循环对青藏高原腹地不同生态系统土壤细菌群落结构的影响[J]. 冰川冻土, 2012, 34(6): 1499-1507.][21] Zhang G, Ma X, Niu F, et al. Diversity and distribution of alkaliphilic psychrotolerant bacteria in the Qinghai-Tibet Plateau permafrost region [J]. Extremophiles, 2007, 11(3): 415-424.[22] Zumsteg A, Luster J, Göransson H, et al. Bacterial, archaeal and fungal succession in the forefieldof a receding glacier[J]. Microbial Ecology, 2012, 63(3): 552-564.[23] Xue D, Yao H Y, Ge D Y, et al. Soil microbial community structure in diverse land use systems: A comparative study using Biolog, DGGE, and PLFA analyses [J]. Pedosphere, 2008, 18(5): 653-663.[24] Ren Zuohua, Zhang Yuguang, Li Diqiang, et al. The soil microbial activities and microbial biomass in Sanjiangyuan alpine grassland [J]. Acta Ecologica Sinica, 2011, 31(11): 3232-3238. [任佐华, 张于光, 李迪强, 等. 三江源地区高寒草原土壤微生物活性和微生物量[J]. 生态学报, 2011, 31(11): 3232-3238.][25] Meng Haojun, Liu Xiande, Jin Ming, et al. Response of edaphon to different vegetation types in Qilian Mountains [J]. Chinese Journal of Soil Science, 2007, 38(6): 1127-1130. [孟好军, 刘贤德, 金铭, 等. 祁连山不同森林植被类型对土壤微生物影响的研究[J]. 土壤通报, 2007, 38(6): 1127-1130.][26] Liu Guangxiu, Dong Xiaopei, Zhang Wei, et al. The changing mechanisms of microbial number on surface soil with altitude[J]. Journal of Glaciology and Geocryology, 2010, 32(6): 1170-1174. [刘光琇, 董小培, 张威, 等. 不同海拔表层土壤微生物数量消长的机理[J]. 冰川冻土, 2010, 32(6): 1170-1174.][27] Margesin R, Jud M, Tscherko D, et al. Microbial communities and activities in alpine and subalpine soils[J]. FEMS Microbiology Ecology, 2009, 67(2): 208-218.[28] Ma X, Chen T, Zhang G, et al. Microbial community structure along an altitude gradient in three different localities[J]. Folia Microbiologica, 2004, 49(2): 105-111.[29] Giri D D, Shukla P N, Kashyap S, et al. Variation in methanotrophic bacterial population along an altitude gradient at two slopes in tropical dry deciduous forest[J]. Soil Biology and Biochemistry, 2007, 39(9): 2424-2426.[30] Hu Yigang. Soil microbial population characteristics of alpine grassland in the Eastern Qilian Mountains and 16S rDNA identification of the dominant bacteria as well as the action in grassland. Lanzhou: Gansu Agricultural University, 2007. [胡宜刚. 东祁连山高寒草地土壤微生物区系特征、 优势细菌的16S rDNA鉴定及其在草地中的作用. 兰州: 甘肃农业大学, 2007.][31] Zhu Jiarui. Study on the prokaryotic microbial community structure and diversity of different habitats soil in Shule upstream. Lanzhou: Lanzhou University, 2012. [朱嘉睿. 疏勒河上游不同生境中原核微生物群落结构多样性研究. 兰州: 兰州大学, 2012.][32] Bai Y, Yang D, Wang J, et al. Phylogenetic diversity of culturable bacteria from alpine permafrost in the Tianshan Mountains, northwestern China [J]. Research in Microbiology, 2006, 157(8): 741-751.[33] Chen Wei, Zhang Wei, Li Shiweng, et al. Features of soil cultivable microorganism quantity and diversity distribution under different alpine grassland ecosystems in Qinghai-Tibet Plateau[J]. Journal of Glaciology and Geocryology, 2011, 33(6): 1419-1426. [陈伟, 张威, 李师翁, 等. 青藏高原不同类型草地生态系统下土壤可培养细菌数量及多样性分布特征研究[J]. 冰川冻土, 2011, 33(6): 1419-1426.][34] Suzuki K, Sasaki J, Uramoto M, et al. Cryobacterium psychrophilumgen. nov., sp. nov., nom. rev., comb. nov., an obligately psychrophilic actinomycete to accommodate"Curtobacterium psychrophilum" Inoue and Komagata 1976[J]. International Journal of Systematic Bacteriology, 1997, 47(2): 474-478.[35] Xiang S, Yao T, An L, et al. 16S rRNA sequences and differences in bacteria isolated from the Muztag Ata Glacier at increasing depths[J]. Applied and Environmental Microbiology, 2005, 71(8): 4619-4627.[36] Behrendt U, Ulrich A, Schumann P, et al. Diversity of grass-associated Microbacteriaceae isolated from the phyllosphere and litter layer after mulching the sward; polyphasic characterization of Subtercola pratensis sp. nov., Curtobacterium herbarum sp. nov. and Plantibacter flavus gen. nov., sp. nov.[J]. International Journal of Systematic and Evolutionary Microbiology, 2002, 52: 1441-1454.[37] Mnnistö M K, Tiirola M, Hggblom M M. Bacterial communities in Arctic fields of Finnish Lapland are stable but highly pH-dependent [J]. FEMS Microbiology Ecology, 2007, 59: 452-465.[38] Diazi H F, Grosjean M, Graumlich L. Climate variability and change in high elevation regions: past, present and future[J]. Climatic Change, 2003, 59(12): 1-4.[39] Li Changming, Zhang Xinfang, Zhao Lin, et al. Phylogenetic diversity of bacteria isolates and community function in permafrost-affected soil along different vegetation types in the Qinghai-Tibet Plateau [J]. Journal of Glaciology and Geocryology, 2012, 34(3): 713-725. [李昌明, 张新芳, 赵林, 等. 青藏高原多年冻土区土壤需氧可培养细菌多样性及群落功能研究[J]. 冰川冻土, 2012, 34(3): 713-725.][40] Ganzert L, Lipski A, Hubberten H W, et al. The impact of different soil parameters on the community structure of dominant bacteria from nine different soils located on Livingston Island, South Shetland Archipelago, Antarctica[J]. FEMS Microbiology Ecology, 2011, 76: 476-491. |