X img

官方微信

img

群号:冰川冻土交流群

QQ群:218834310

高级检索

冰川冻土 ›› 2013, Vol. 35 ›› Issue (2): 465-474.doi: 10.7522/j.issn.1000-0240.2013.0055

• 寒旱区生物学 • 上一篇    下一篇

基于WRF模式数据和CASA模型的青海湖流域草地NPP估算研究

郑中1,2, 祁元1, 潘小多1, 葛劲松3, 聂学敏3   

  1. 1. 中国科学院 寒区旱区环境与工程研究所, 甘肃 兰州 730000;
    2. 中国科学院大学, 北京 100049;
    3. 青海省生态环境遥感监测中心, 青海 西宁 810000
  • 收稿日期:2012-10-06 修回日期:2013-01-03 出版日期:2013-04-25 发布日期:2013-05-14
  • 通讯作者: 祁元,E-mail:qiyuan@lzb.ac.cn E-mail:qiyuan@lzb.ac.cn
  • 作者简介:郑中(1988-), 男, 四川达州人, 2010年毕业于四川师范大学, 现为中国科学院寒区旱区环境与工程研究所在读硕士研究生, 主要从事生态和水文模型研究. E-mail: zhengzhong@lzb.ac.cn
  • 基金资助:

    国家自然科学基金项目(91125001; 91125002; 91125003; 91125004; 91025004)资助

Estimating the Grassland NPP in Qinghai Lake Basin Based on WRF Model Data and CASA Model

ZHENG Zhong1,2, QI Yuan1, PAN Xiao-duo1, GE Jin-song3, NIE Xue-min3   

  1. 1. Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou Gansu 730000, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China;
    3. Qinghai Ecological Environment Remote Monitoring Center, Xining Qinghai 810000, China
  • Received:2012-10-06 Revised:2013-01-03 Online:2013-04-25 Published:2013-05-14

摘要:

植被净初级生产力(NPP)是研究陆地碳循环过程的核心内容, 而高海拔区域由于气象观测数据的缺乏造成模型对其估算的不准确.在WRF模式气象数据和SPOT-VEGETATION遥感影像的基础上, 利用CASA模型对青海湖流域2000-2010年的草地NPP进行了估算, 经过实地样方数据和其他模型数据的验证后, 分析了青海湖流域近11 a来草地NPP的空间分布格局和时间变化特征.结果表明: 1)在气象观测资料缺乏的青海湖流域, WRF模式的气象数据能较好地应用到模型中, CASA模型对该区域草地NPP的模拟精度较高; 2)2000-2010年青海湖流域草地年均NPP为2.71×1012gC·a-1, 单位面积草地NPP为145.71 gC·m-2·a-1; 空间分布上呈现出由东南向西北随着海拔升高逐渐下降的格局, 在海拔3 200~3 500 m的区域草地单位面积的NPP达到最大; 3)2000-2010年青海湖流域草地NPP年际变化明显, 近11 a呈现出明显的增加趋势, 增加区域主要分布在环湖地区; 年内季节变化显著, 夏季NPP占到全年的57.36%; 4)对NPP和气象站点太阳辐射、 气温、 降水数据进行相关性分析, 发现影响青海湖流域草地NPP变化的主要驱动力是气温.

关键词: 青海湖流域, WRF模式, CASA模型, NPP

Abstract:

Net primary productivity (NPP) is the core of terrestrial carbon cycle research. Estimating NPP is not accurate in high altitude regions owing to lack of meteorological data. Based on the WRF model meteorological data and SPOT-VEGETATION remote sensing images, the grassland NPP of Qinghai Lake basin was estimated using CASA model from 2000 to 2010. The simulated results were validated by observed data and other simulated data, and then the temporal and spatial variations of NPP were analyzed. The analyses show: 1) WRF meteorological data might be applied well to CASA model, perfectly simulating grassland NPP. 2) The annual grassland NPP was 2.71×10m12 gC·a-1 and the NPP per unit area was 145.71 gC·m-2·a-1 on average, and spatially, NPP showed an increasing from southeast to northwest with elevation increasing, but NPP per unit area reached a maximum at the altitude of 3 200~3 500 m. 3) The inter-annual variation of NPP was obvious and an increasing tendency could be seen from 2000 to 2010. Around Qinghai Lake there was a main NPP increasing area. The NPP changed month by month significantly; most of them (57.36%) took place in summer. 4) Correlation analysis between NPP and meteorological data, including solar radiation, air temperature and precipitation, shows that the main factor affecting NPP is air temperature.

Key words: Qinghai Lake basin, WRF model, CASA model, net primary productivity (NPP)

中图分类号: 

  • Q948