[1] Nawrot M, Pazdrowski W, Szymański M. Dynamics of heartwood formation and axial and radial distribution of sapwood and heartwood in stems of European Larch (Larix decidua Mill.)[J]. Journal of Forest Science, 2008, 54(9): 409-417.[2] Wang Mao, Zhang Zhinong. Sapwood and heartwood [J]. Bulletin of Biology, 1998,33(9): 13-14. (汪矛,张志农.边材与心材[J].生物学通报,1998,33(9): 13-14.)[3] Schmidt O. Wood and Tree Fungi: Biology, Damage, Protection, and Use[M]. Berlin: Springer, 2006: 161-235.[4] Oliva J, Romeralo C, Stenlid J. Accuracy of the Rotfinder instrument in detecting decay on Norway spruce (Picea abies) trees[J]. Forest Ecology and Management, 2011, 262(8): 1378-1386.[5] Diawara A, Loustau D, Berbigier P. Comparison of two methods for estimating the evaporation of a Pinus pinaster (Ait.) stand: sap flow and energy balance with sensible heat flux measurements by an eddy covariance method[J]. Agricultural and Forest Meteorology, 1991, 54(1): 49-66.[6] Loustau D, Berbigier P, Roumagnac P, et al. Transpiration of a 64-year-old maritime pine stand in Portugal: 1. Seasonal course of water flux through maritime pine[J]. Oecologia, 1996,107(1): 33-42.[7] Phillips N, Oren R, Zimmermann R. Radial patterns of xylem sap flow in non-, diffuse- and ring-porous tree species[J]. Plant, Cell & Environment, 1996,19(8): 983-990.[8] Bernier P Y, Br da N, Granier A, et al. Validation of a canopy gas exchange model and derivation of a soil water modifier for transpiration for sugar maple (Acer saccharum Marsh.) using sap flow density measurements[J]. Forest Ecology and Management, 2002, 163(1-3): 185-196.[9] Phillips N, Bond B J, McDowell N G, et al. Canopy and hydraulic conductance in young, mature and old Douglas-fir trees[J]. Tree Physiology, 2002, 22(2-3): 205-211.[10] Chang X, Zhao W, Zhang Z, et al. Sap flow and tree conductance of shelter-belt in arid region of China[J]. Agricultural and Forest Meteorology, 2006,138(1-4):132-141.[11] Courbet F, Houllier F. Modelling the profile and internal structure of tree stem. Application to Cedrus atlantica(Manetti)[J]. Annals of Forest Science, 2002,59(1): 63-80.[12] Kutscha N P, Sachs I B. Color Tests for Differentiating Heartwood and Sapwood in Certain Softwood Tree Species. Madison, Wisconsin: Forest Products Laboratory, Report No. 2246, 1962.[13] Mark W R, Crews D L. Heat-pulse velocity and bordered pit condition in living Engelmann spruce and Lodgepole pine trees (Picea engelmannii, Pinus contorta)[J]. Forest Science, 1973, 19(4): 291-296.[14] Edwards W R N, Warwick N W M. Transpiration from a kiwi fruit vine as estimated by the heat pulse technique and the Penman-Monteith equation[J]. New Zealand Journal of Agricultural Research, 1984, 27: 537-543.[15] ?ermák J, Cienciala E, Kucera J, et al. Radial velocity profiles of water flow in trunks of Norway spruce and oak and the response of spruce to severing[J]. Tree Physiology, 1992, 10(4): 367-380.[16] Granier A, Anfodillo T, Sabatti M, et al. Axial and radial water flow in the trunks of oak trees: a quantitative and qualitative analysis[J]. Tree Physiology, 1994, 14(12): 1383-1396.[17] Zang D, Beadle C L, White D A. Variation of sapflow velocity in Eucalyptus globuluswith position in sapwood and use of a correction coefficient[J]. Tree Physiology, 1996,16(8): 697-703.[18] Jiménez M S, Nadezhdina N, ?ermák J, et al. Radial variation in sap flow in five laurel forest tree species in Tenerife, Canary Islands[J]. Tree Physiology, 2000, 20(17): 1149-1156.[19] Ford C R, McGuire M A, Mitchell R J,et al. Assessing variation in the radial profile of sap flux density in Pinusspecies and its effect on daily water use[J]. Tree Physiology, 2004, 24(3), 241-249.[20] Si Jianhua, Feng Qi, Zhang Xiaoyou. Application of heat-pulse technique to determine the stem sap flow of Populus euphratica[J]. Journal of Glaciology and Geocryology, 2004,26(4): 503-508. [司建华,冯起,张小由.热脉冲技术在确定胡杨幼树干液流中的应用[J].冰川冻土,2004,26(4): 503-508.][21] Zhao Changming, Gao Xianliang, Ma Renyi, et al. Responses of Sabina przewalskiiand Picea crassifoliaseedlings to different draught stress of soil in ecophysiological characteristics[J]. Journal of Glaciology and Geocryology, 2012,34(1):147-154. [赵长明,高贤良,马仁义,等.祁连圆柏和青海云杉幼苗生理生态特征对土壤干旱胁迫的响应[J].冰川冻土,2012,34(1): 147-154.][22] Chang Xuexiang, Che Kejun, Song Caifu. Preliminary studies on the biomass of Picea crassifoliaforest community in Qilian Mountains[J]. Journal of Northwest Forestry College, 1996,11(1): 19-23. [常学向,车克钧,宋彩福.祁连山林区青海云杉林群落生物量的初步研究[J].西北林学院学报,1996,11(1): 19-23.][23] Peng Shouzhang, Zhao Chuanyan, Zheng Xianglin, et al. Spatial distribution characteristics of the biomass and carbon storage of Qinghai spruce (Picea crassifolia) forests in Qilian Mountains[J]. Chinese Journal of Applied Ecology, 2011, 22(7): 1689-1694. [彭守璋,赵传燕,郑祥霖,等.祁连山青海云杉林生物量和碳储量空间分布特征[J].应用生态学报, 2011,22(7): 1689-1694.][24] Zhang Lijie, Zhao Wenzhi, He Zhibin. Characteristics in Picea crassifoliaforest fractal dimension and its influencing factors[J]. Acta Ecologica Sinica, 2008, 28(4):1383-1389. [张立杰,赵文智,何志斌.青海云杉(Picea crassifolia)种群格局的分形特征及其影响因素[J].生态学报, 2008, 28(4):1383-1389.][25] Liu Xiaohong, An Wenling, Liang Eryuan, et al. Spatio-temporal variability and climatic significance of tree ring’s δ13C of Picea crassifoliaon the Qilian Mountains[J]. Journal of Glaciology and Geocryology, 2010,32(4):666-676. [刘晓宏, 安文玲, 梁尔源, 等.祁连山青海云杉树轮δ13C的时空变化及其气候意义[J].冰川冻土, 2010,32(4):666-676.][26] Yun Hanbai, Chen Tuo, Liu Xiaohong, et al. Relationship between foliar stable carbon isotope composition and physiological factors in Picea crassifoliain the Qilian Mountains[J]. Journal of Glaciology and Geocryology, 2010,32(1):151-156. [贠汉伯,陈拓,刘晓宏,等.祁连山青海云杉叶片δ13C特征及其与生理指标关系[J].冰川冻土,2010,32(1):151-156.][27] Bamber R K. Heartwood, its function and formation[J]. Wood Science and Technology, 1976, 10(1): 1-8.[28] Hillis W E. Heartwood and Tree Exudates[M]. Berlin: Springer-Verlag, 1987.[29] Sellin A. Sapwood-heartwood proportion related to tree diameter, age, and growth rate in Picea abies[J]. Canadian Journal of Forest Research, 1994, 24(5): 1022-1028.[30] Wullschleger S D, King A W. Radial variation in sap velocity as a function of stem diameter and sapwood thickness in yellow-poplar trees[J]. Tree Physiology, 2000, 20(8): 511-518.[31] Becker P. Sap flow in Bornean heath and dipterocarp forest trees during wet and dry periods[J]. Tree Physiology, 1996,16(1-2): 295-299.[32] Nadezhdina N, ?ermák J, Ceulemans R. Radial patterns of sap flow in woody stems of dominant and understory species: scaling errors associated with positioning of sensors[J]. Tree Physiology, 2002, 22(13): 907-918.[33] ?ermák J, Nadezhdina N. Sapwood as the scaling parameter-defining according to xylem water content or radial pattern of sap flow?[J]. Annals of Forest Science, 1998, 55(5): 509-521. |