[1] Augustin L, Panichi S, Frascati F. EPICA Dome C 2 drilling operations: performances, difficulties, results[J]. Annals of Glaciology, 2007, 47(1): 68-72.[2] Eustes A W, Fleckenstein W W, Beiriger M, et al. United States Deep Ice Coring Rig Assessment. Report to Ice Coring and Drilling Services. Golden, CO: Colorado School of Mines, 2001.[3] Litwak J, Kersten L, Kuivinen K. The PICO intermediate drill system[C]//Holdsworth G, Kuivinen K C, Rand J H. Proceedings of the Second International Workshop/Symposium on Ice Drilling Technology. CRREL Special Report 84-34. Hanover, NH: CRREL, 1984: 41-44.[4] Morse D L, Blankenship D D, Waddington E D, et al. A site for deep ice coring in West Antarctica: Results from aerogeophysical surveys and thermo-kinematic modeling[J]. Annals of Glaciology, 2002,35(1): 36-44.[5] Tanaka Y, Takahashi A, Fujii Y, et al. Development of a JARE deep ice core drill system[J]. Memoirs of National Institute of Polar Research, Special Issue, 1994, 49: 113-123.[6] Wumkes M A. Development of the US deep coring ice drill[J]. Memoirs of National Institute of Polar Research, Special Issue, 1994, 49: 41-51.[7] Johnsen S J, Hansen S B, Sheldon S G, et al. The Hans Tausen drill: design, performance, future developments and some lessons learned[J]. Annals of Glaciology, 2007, 47(1): 89-98.[8] Kuduryashov B B, Vasiliev N J, Vostretsov R N, et al. Deep ice coring at Vostok Station (East Antarctica) by an electromechanical drill[J]. Memoirs of National Institute of Polar Research, Special Issue, 2002, 56: 91-102.[9] Kelley J J, Stanford K, Koci B, et al. Ice coring and drilling technologies developed by the Polar Ice Coring Office[J]. Memoirs of National Institute of Polar Research, Special issue, 1994, 49: 24-40.[10] Augustin L, Motoyama H, Wilhelms F, et al. Drilling comparison in warm ice and drill design comparison[J]. Annals of Glaciology, 2007,47(1): 73-78.[11] Mulvaney R, Alemany O, Possenti P. The Berkner Island (Antarctica) ice-core drilling project[J]. Annals of glaciology, 2007, 47(1): 115-124.[12] Kudryashov B B, Vasiliev N I, Talalay P G. KEMS-112 electromechanical ice core drill[J]. Memoirs of National Institute of Polar Research, Special issue, 1994, 49: 138-152.[13] NICL-SMO. IPICS Pre-Workshop Draft Report. IPICS, 2004: 80.[14] Vasiliev N I, Talalay P G, Bobin N E, et al. Deep drilling at Vostok Station, Antarctica: history and recent events[J]. Annals of Glaciology, 2007, 47(1): 10-23.[15] Johnsen S J, Gundestrup N S, Hansen S B, et al. The new improved version of the ISTUK ice core drill[J]. Memoirs of National Institute of Polar Research, Special issue, 1994, 49: 9-23.[16] Gundestrup N S, Johnsen S J, Reeh N. ISTUK: A deep ice core drill system[C]//Holdsworth G, Kuivinen K C, Rand J H. Proceedings of the Second International Workshop/Symposium on Ice Drilling Technology. CRREL Special Report 84-34. Hanover, NH: CRREL, 1984: 7-19.[17] Johnson J A, Mason W P, Shturmakov A J, et al. A new 122 mm electromechanical drill for deep ice-sheet coring (DISC): 5. Experience during Greenland field testing[J]. Annals of Glaciology, 2007, 47(1): 54-60.[18] Mortensen N B, Sendelbach P J, Shturmakov A J. A new 122 mm electromechanical drill for deep ice-sheet coring (DISC): 3. Control, electrical and electronics design[J]. Annals of Glaciology, 2007, 47(1): 41-50.[19] Shturmakov A J, Sendelbach P J. A new 122 mm electromechanical drill for deep ice-sheet coring (DISC): 4. Drill cable[J]. Annals of Glaciology, 2007, 47(1): 51-53.[20] Shturmakov A J, Lebar D A, Mason W P, et al. A new 122 mm electromechanical drill for deep ice-sheet coring (DISC): 1. Design concepts[J]. Annals of Glaciology, 2007, 47(1): 28-34.[21] Jones N. Polar research: Buried treasure[J]. Nature, 2007, 446(7132): 126-128.[22] Gao Xinsheng, Zhu Guocai, Ren Jiawen, et al. Development and application of light-weight core drills for ice coring of glaciers in high mountains in China[J]. Journal of Glaciology and Geocryology, 2012, 34(6): 1364-1370.[高新生, 朱国才, 任贾文, 等. 我国轻型高山冰芯机械钻机的发展和应用[J]. 冰川冻土, 2012, 34(6): 1364-1370.][23] Wang Shimeng, Xiao Cunde, Xie Aihong, et al. An ice core to bedrock, 2 537.36 m in depth of the NEEM Internati onal Project[J]. Journal of Glaciology and Geocryology, 2011, 33(3): 589-594.[王士猛, 效存德, 谢爱红,等. NEEM计划2 537.36 m透底深冰芯的钻取与成果概述[J]. 冰川冻土, 2011, 33(3): 589-594.][24] Wang Ninglian, Yao Tandong. Contributions of ice core to the past global change research[J]. Journal of Glaciology and Geocryology, 2003, 25(3): 275-287.[王宁练,姚檀栋. 冰芯对于过去全球变化研究的贡献[J]. 冰川冻土, 2003, 25(3): 275-287.][25] Yao Tandong, Wang Ninglian, Ren Jiawen, et al. The new progress on the ice core and climate—the International Symposium on Ice Core and Climate[J]. Journal of Glaciology and Geocryology, 2002, 24(6): 806-811.[姚檀栋,王宁练,任贾文,等. 国际冰芯与气候环境研究新进展——关于国际"冰芯与气候"会议[J]. 冰川冻土, 2002, 24(6): 806-811.][26] Ren Jiawen, Qin Dahe, Xiao Cunde, et al. Comparison of ice-core records of climatic change over past centuries in Antarctic[J]. Journal of Glaciology and Geocryology, 2002, 24(5): 484-491.[任贾文,秦大河,效存德,等. 南极地区数百年来气候变化的冰芯记录对比研究[J]. 冰川冻土, 2002, 24(5): 484-491.][27] Ren Jiawen, Xiao Cunde, Hou Shugui, et al. New focuses of polar ice-core study: NEEM and Dome A[J]. Chinese Science Bulletin, 2009, 54(6): 1009-1011.[任贾文,效存德,侯书贵,等. 极地冰芯研究的新焦点: NEEM与Dome A[J]. 科学通报, 2009, 54(4): 399-401.][28] Li Chuanjin, Ren Jiawen, Qin Dahe, et al. Summary of research on climatic influences from volcanic activities and depositional records of volcanic matters in ice cores[J]. Journal of Glaciology and Geocryology, 2012, 34(4): 863-876.[李传金,任贾文,秦大河,等. 火山活动的气候影响及其冰芯记录研究进展[J]. 冰川冻土, 2012, 34(4): 863-876.][29] Yang Kang. The progress of Greenland Ice Sheet surface ablation research[J]. Journal of Glaciology and Geocryology, 2013, 35(1): 101-109.[杨康. 格陵兰冰盖表面消融研究进展[J]. 冰川冻土, 2013, 35(1): 101-109.][30] Duan Keqin, Hong Jianchang. A 400-year variation of NO-3concentration recorded in the Dasuopu ice core, Himalayas[J]. Journal of Glaciology and Geocryology, 2010, 32(2): 231-234.[段克勤, 洪健昌. 喜马拉雅山达索普冰芯近400 a来NO-3浓度的变化[J]. 冰川冻土, 2010, 32(2): 231-234.][31] Xiao Cunde, Li Yuansheng, Hou Shugui, et al. Preliminary evidence indicating Dome A (Antarctica) satisfying preconditions for drilling the oldest ice core[J]. Chinese Science Bulletin, 2008, 53(1): 102-106.[效存德,李院生,侯书贵,等. 南极冰盖最高点满足钻取最古老冰芯的必要条件: Dome A最新实测结果[J]. 科学通报, 2007, 52(20): 2456-2460.][32] Erickson R W, Maksimovic D. Fundamentals of Power Electronics[M]. 2nd Edition. Norwell, MA: Kluwer Academic Publishers, 2001: 601.[33] Mason W P, Shturmakov A J, Johnson J A, et al. A new 122 mm electromechanical drill for deep ice-sheet coring (DISC): 2. Mechanical design[J]. Annals of Glaciology, 2007, 47(1): 35-40.[34] http://waisdivide.unh.edu/[35] Yan Taining. Analysis of ice-drilling technology and drilling structure[J]. Prospecting Techniques, 1995(1): 1-6.[36] Motoyama H. The second deep ice coring project at Dome Fuji, Antarctica[J]. Scientific Drilling, 2007, 5: 41-43.[37] Ueda H T, Garfield D E. Deep core drilling at Byrd Station, Antarctica[C]//International Symposium on Antarctic Glaciological Exploration (ISAGE). Cambridge, UK: W Heffer & Sons Ltd, 1970: 53-62.[38] Andreycak B. The UC-3823A, B and UC3825A, B Enhanced Generation of PWM Controllers[R]. Unitrode Application Note U-128. Merrimack, NH: Unitrode Corporation, 1997.[39] Feng Deqiang. Drill Design[M]. Wuhan: China University of Geosciences Press, 1993.[40] Augustin L, Antonelli A. The EPICA deep drilling program[J]. Memoirs of National Institute of Polar Research, Special issue, 2002, 56: 226-244. |