X img

官方微信

img

群号:冰川冻土交流群

QQ群:218834310

高级检索

冰川冻土 ›› 2013, Vol. 35 ›› Issue (4): 848-856.doi: 10.7522/j.issn.1000-0240.2013.0096

• 冰冻圈与全球变化 • 上一篇    下一篇

不同封育年限高寒草甸植被/土壤碳密度及净生态系统CO2交换量的比较

刘晓琴1,2, 吴启华1,2, 李红琴1,3, 毛绍娟1,2, 李英年1,3   

  1. 1. 中国科学院 西北高原生物研究所, 青海 西宁 810001;
    2. 中国科学院大学, 北京 100049;
    3. 中国科学院 西北高原生物研究所 高原生物适应与进化重点实验室, 青海 西宁 810001
  • 收稿日期:2012-12-12 修回日期:2013-03-10 出版日期:2013-08-25 发布日期:2013-09-11
  • 作者简介:刘晓琴(1987-),女,内蒙古呼和浩特人,现为硕士研究生,现主要从事全球变化生态学研究.E-mail:liuxiaoqin210@mails.ucas.ac.cn
  • 基金资助:
    国家自然科学基金项目(31270523;31070437);中国科学院战略性先导科技专项"应对气候变化的碳收支认证及相关问题"(XDA05050601;XDA05050404)资助

A Comparison of the Vegetation/Soil Carbon Density and Net Ecosystem CO2 Exchange of Alpine Meadow with Different Enclosure Durations

LIU Xiao-qin1,2, WU Qi-hua1,2, LI Hong-qin1,3, MAO Shao-juan1,2, LI Ying-nian1,3   

  1. 1. Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining Qinghai 810001, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China;
    3. Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining Qinghai 810001, China
  • Received:2012-12-12 Revised:2013-03-10 Online:2013-08-25 Published:2013-09-11
  • Contact: 李英年,E-mail:ynli@nwipb.ac.cn E-mail:ynli@nwipb.ac.cn

摘要: 封育是推广范围最广的草地恢复措施之一. 为研究不同封育年限高寒草甸植被、土壤碳密度变化, 对1 a、6 a和16 a不同封育年限样地监测结果进行分析.结果表明: 不同封育年限高寒草甸植被现存碳密度表现出封育16 a>封育1 a>封育6 a, 分别为1 522.57 gC·m-2、1 323.12 gC·m-2和1 148.17 gC·m-2, 但不同封育年限之间植被现存碳密度差异不显著(P>0.05). 土壤碳密度垂直分布明显, 0~5 cm和5~10 cm土层有机碳密度较高, 随土层深度增加土壤有机碳密度明显下降, 土壤容重上升;不同封育年限之间0~40 cm层次土壤碳密度和土壤容重差异性均不显著, 但仍可表现出土壤碳密度封育1 a>封育6 a>封育16 a, 分别为28 636.32 gC·m-2、26 570.92 gC·m-2和26 060.71 gC·m-2;同时, 土壤容重随封育时间延长而下降. 对7月下旬到10月上旬净生态系统CO2交换率(NEE)监测来看, 封育1 a植被土壤碳吸收速率显著高于封育16 a(P<0.05);而排放率与封育16 a样地接近, 差异不显著(P>0.05).

关键词: 高寒草甸, 不同封育年限, 植被/土壤碳密度, 净生态系统CO2交换率

Abstract: Exclusion is one of the most promoted measures in grassland restoration. At present, it is necessary to study the vegetation-soil carbon density of alpine meadow with different enclosures. Based on monitoring 1-year, 6-year and 16-year grazing exclusion plots, it is found that: 1) the existing vegetation carbon density of alpine meadow with different enclosure durations is in the order of 16-year grazing exclusion plot (1 522.57 gC·m-2) > 1-year grazing exclusion plot (1 323.12 gC·m-2) > 6-year grazing exclusion plot (1 148.17 gC·m-2), with a density variation statistically insignificant (P>0.05);2) the soil carbon density has a significant vertical distribution, with relatively high organic carbon density at 0~5 cm and 5~10 cm depths, soil organic carbon density greatly reducing downwards and soil bulk density increasing with depth. Moreover, the differences in soil organic contents and in soil bulk density are not statistically significant (P>0.05) between different enclosure ages, but the soil carbon density at 0 40 cm depth has the order of 1-year grazing exclusion plot (28 636.32 gC·m-2) > 6-year grazing exclusion plot (26 570.92 gC·m-2)> 16-year grazing exclusion plot (26 060.71 gC·m-2). The soil bulk density reduces with enclosure age;3) by monitoring the net ecosystem CO2 exchange (NEE) from lately July to early October, it is found that the soil carbon uptake rate of 1-year grazing exclusion plot is significantly higher than that of 16-year grazing exclusion plot (P<0.05), but their release rates are almost the same, with a difference statistically insignificant (P>0.05).

Key words: alpine meadow, different enclosure durations, vegetation/soil carbon density, net ecosystem CO2 exchange (NEE)

中图分类号: 

  • S153/Q948