[1] Huang Maohuan. Recent progresses in studies of ice flow in China [J]. Journal of Glaciology and Geocryology, 1995, 17(4): 366-370. [黄茂桓. 近年来我国冰流动研究进展[J]. 冰川冻土, 1995, 17(4): 366-370.] [2] Boulton G S, Dobbie K E, Zatsepin S. Sediment deformation beneath glaciers and its coupling to the subglacial hydraulic system[J]. Quaternary International, 2001, 86: 3-28. [3] Clarke G K C. Subglacial processes[J]. Annual Review of Ea-rth and Planetary Sciences, 2005, 33: 247-276. [4] Piotrowski J A, Larsen N K, Menzies J, et al. Formation of subglacial till under transient bed conditions: Deposition, deformation, and basal decoupling under a Weichselian ice sheet lobe, central Poland [J]. Sedimentology, 2006, 53: 83-106. [5] Liu Gengnian, Luo Risheng, Cao Jun, et al. Processes and environmental significance of the subglacial chemical deposits in Tianshan Mountains [J]. Science in China (Series D: Earth Sciences), 2005, 48(9): 1470-1478. [6] Larsen N K, Piotrowski J A, Christoffersen P, et al. Formation and deformation of basal till during a glacier surge;Elisebreen, Svalbard[J]. Geomorphology, 2006, 81: 217-234. [7] van der Meer J J M. Microscopic evidence of subglacial deformation[J]. Quaternary Science Reviews, 1993, 12: 553-587. [8] van der Meer J J M. Particle and aggregate mobility in till: Microscopic evidence of subglacial processes[J]. Quaternary Science Reviews, 1996, 16: 827-831. [9] Hart J K. An investigation of subglacial processes at the microscale from Briksdalsbreen, Norway[J]. Sedimentology, 2006, 53: 125-146. [10] Menzies J, van der Meer J J M, Rose J. Till-as a glacial"tectomict", its internal architecture, and the development of a "typing" method for till differentiation [J]. Geomorphology, 2006, 75: 172-200. [11] Denis M, Guiraud M, Konaté M, et al. Subglacial deformation and water-pressure cycles as a key for understanding ice stream dynamics: evidence from the Late Ordovician succession of the Djado Basin (Niger)[J]. International Journal of Earth Sciences, 2010, 99: 1399-1425. [12] Phillips E, van der Meer J J M, Ferguson A. A new 'microstructural mapping' methodology for the identification, analysis and interpretation of polyphase deformation within subglacial sediments[J]. Quaternary Science Reviews, 2011, 30: 2570-2596. [13] Su Zhen, Shi Yafeng, Zheng Benxing. Quaternary glacial remains on the Gongga Mountain and the division of glacial period [J]. Advances in Earth Sciences, 2002, 17(5): 639-647. [苏珍, 施雅风, 郑本兴. 贡嘎山第四纪冰川遗迹及冰期划分[J]. 地球科学进展, 2002, 17(5): 639-647.] [14] Xie Zichu, Su Zhen, Shen Yongping, et al. Mass balance and water exchange of Hailuoguo Glacier in Mount Gongga and their influence on glacial melt runoff[J]. Journal of Glaciology and Geocryology, 2001, 23(1): 7-15. [谢自楚, 苏珍, 沈永平, 等. 贡嘎山海螺沟冰川物质平衡、水交换特征及其对径流的影响[J]. 冰川冻土, 2001, 23(1): 7-15.] [15] Fan Wenji. The geological tectonic foundation of Minya Go-ngkar and its characteristic glacial landforms[J]. Journal of Chengdu University of Science and Technology, 1982(3): 19-33. [范文纪. 贡嘎山的地质构造基础和冰川地貌特征[J]. 成都科技大学学报, 1982(3): 19-33.] [16] Liu Gengnian, Chen Yixin, Zhang Yue, et al. Mineral deformation and subglacial processes on ice-bedrock interface of Hailuogou Glacier[J]. Chinese Science Bulletin, 2009, 54(18): 3318-3325. [17] Petschick R, Kuhn G, Gingele F. Clay mineral distribution in surface sediments of the South Atlantic: Sources, transport, and relation to oceanography[J]. Marine Geology, 1996, 130: 203-229. [18] Xie Youyu. Surface Textural Features Micrographs of Chinese Quartz Sand [M]. Beijing: China Ocean Press, 1984. [谢又予. 中国石英砂表面结构特征图谱[M]. 北京: 海洋出版社, 1984.] [19] Zhang Mei, Chen Yixin, Yin Senlu, et al. Sedimental features and paleo-environment reconstruction of the slope deposit at Xiaogangou of the Golmud River[J]. Arid Land Geography, 2011, 34(6): 890-903. [张梅, 陈艺鑫, 银森录, 等. 格尔木河小干沟坡积沉积特征与古环境重建[J]. 干旱区地理, 2011, 34(6): 890-903.] [20] Mahaney W C, Claridge G, Campbell I. Microtextures on quartz grains in tills from Antarctica[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1996, 121: 89-103. [21] Helland P E, Holmes M A. Surface textural analysis of quartz grains from ODP Site 918 off the southeast coast of Greenland suggests glaciation of southern Greenland at 11 Ma[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1997, 135: 109-121. [22] Strand K, Passchier S, Nsi J. Implications of quartz grain microtextures for onset Eocene/Oligocene glaciation in Prydz Bay, ODP Site 1166, Antarctica [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2003, 198: 101-111. [23] Folk R L. A review of grain size parameters [J]. Sedimentology, 1966, 6: 73-93. [24] Boulton G. Boulder shapes and grain size distribution of debris as indicators of transport paths through a glacier and till genesis [J]. Sedimentology, 1978, 25(6): 773-799. [25] Haldorsen S. Grain-size distribution of subglacial till and its relation to glacial crushing and abrasion[J]. Boreas, 1981, 10: 91-105. [26] Nesbitt H W, Young G M, McLennan S M, et al. Effects of chemical weathering and sorting on the petrogenesis of siliciclastic sediments, with implications for provenance studies [J]. The Journal of Geology, 1996, 104(5): 525-542. [27] McLennan S M. Weathering and global denudation[J]. Journal of Geology, 1993, 101(2): 295-303. [28] Feng Lianjun, Chu Xuelei, Zhang Qirui, et al. CIA (chemical index of alteration) and its applications in the Neoproterozoic clastic rocks[J]. Earth Science Frontiers, 2003, 10(4): 539-544. [冯连君, 储雪蕾, 张启锐, 等. 化学蚀变指数(CIA)及其在新元古代碎屑岩中的应用[J]. 地学前缘, 2003, 10(4): 539-544.] [29] Strand K, Immonen N. Dynamics of the Barents-Kara ice sheet as revealed by quartz sand grain microtextures of the late Pleistocene Arctic Ocean sediments[J]. Quaternary Science Reviews, 2010, 29: 3583-3589. [30] Damiani D, Giorgetti G, Turbanti I M. Clay mineral fluctuations and surface textural analysis of quartz grains in Pliocene-Quaternary marine sediments from Wilkes Land continental rise (East-Antarctica): Paleoenvironmental significance [J]. Marine Geology, 2006, 226: 281-295. [31] Rose N C, Hart J K. Subglacial combination in the deforming bed: Inferences from SEM analysis[J]. Sedimentary Geology, 2008, 203: 87-97. [32] Mahaney W C. Quartz microtextures and microstructures owing to deformation of glaciolacustrine sediments in the northern Venezuelan Andes [J]. Journal of Quaternary Science, 2004, 19(1): 23-33. [33] Iverso N R, Hooyer T S, Baker R W. Ring-shear studies of till deformation: Coulomb-plastic behaviour and distributed strain in glacier beds [J]. Journal of Glaciology, 1998, 44: 634-642. [34] Evans D J A, Phillips E R, Hiemstra J F, et al. Subglacial till: Formation, sedimentary characteristics and classification[J]. Earth-Science Reviews, 2006, 78: 115-176. [35] Piotrowski J A, Larsen N K, Junge F W. Reflections on soft subglacial beds as a mosaic of deforming and stable spots[J]. Quaternary Science Reviews, 2004, 23: 993-1000. [36] Benn D I, Evans D J A. Glaciers and Glaciation [M]. London: Arnold, 1998. [37] Liu Qiao, Liu Shiyin. Trace tests of englacial and subglacial drainage system evolution and a case study at the Hailuogou Glacier [J]. Journal of Glaciology and Geocryology, 2012, 34(5): 1206-1219. [刘巧, 刘时银. 冰内及冰下水系演化的示踪试验及其应用研究[J]. 冰川冻土, 2012, 34(5): 1206-1219.] [38] Lesemann J-E, Alsop G I, Piotrowski J A. Incremental subglacial meltwater sediment deposition and deformation associated with repeated ice-bed decoupling: a case study from the Island of Funen, Denmark[J]. Quaternary Science Reviews, 2010, 29: 3212-3229. [39] Clerc S, Buoncristiani J F, Guiraud M, et al. Depositional model in subglacial cavities, Killiney Bay, Ireland. Interactions between sedimentation, deformation and glacial dynamics [J]. Quaternary Science Reviews, 2012, 33: 142-164. [40] Phillips E, Merritt J. Evidence for multiphase water-escape during rafting of shelly marine sediments at Clava, Inverness-shire, NE Scotland [J]. Quaternary Science Reviews, 2008, 27: 988-1011. |