[1] Yao Tandong, Thompson L, Yang Wei, et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings[J]. Nature Climate Change, 2012, 2(9): 663-667.[2] Ren Jiawen, Jing Zhefan, Pu Jianchen, et al. Glacier variations and climate change in the central Himalaya over the past few decades[J]. Annals of Glaciology, 2006, 43(1): 218-222.[3] He Jianqiao, Song Gaoju, Jiang Xi, et al. Relation between glacial meltwater runoff and mountainous runoff in 2006 in four typical river basins of Heihe River water system[J]. Journal of Desert Research, 2008, 28(6): 1186-1189. [贺建桥, 宋高举, 蒋熹, 等. 2006年黑河水系典型流域冰川融水径流与出山径流的关系[J]. 中国沙漠, 2008, 28(6): 1186-1189.][4] Gao Xin, Zhang Shiqiang, Ye Baisheng, et al. Glacier runoff change in the upper stream of Yarkant River and its impact on river runoff during 1961-2006[J]. Journal of Glaciology and Geocryology, 2010, 32(3): 445-453. [高鑫, 张世强, 叶柏生, 等. 1961-2006年叶尔羌河上游流域冰川融水变化及其对径流的影响[J]. 冰川冻土, 2010, 32(3): 445-453.][5] Gao Xin, Zhang Shiqiang, Ye Baisheng, et al. Recent changes of glacier runoff in the Hexi inland river basin[J]. Advances in Water Science, 2011, 22(3): 344-350. [高鑫, 张世强, 叶柏生, 等. 河西内陆河流域冰川融水近期变化[J]. 水科学进展, 2011, 22(3): 344-350.][6] Cui Hang, Wang Jie. The methods for estimating the equilibrium line altitudes of a glacier[J]. Journal of Glaciology and Geocryology, 2013, 35(2): 345-354. [崔航, 王杰. 冰川物质平衡线的估计方法[J]. 冰川冻土, 2013, 35(2): 345-354.][7] Mao Ruijuan, Jiang Xi, Guo Zhongming, et al. Study of the inversion precision of albedo on the Qiyi Glacier in the Qilian Mountain based on TM/ETM+ image[J]. Journal of Glaciology and Geocryology, 2013, 35(2): 301-309. [毛瑞娟, 蒋熹, 郭忠明, 等. 基于TM/ETM+影像反演祁连山七一冰川反照率精度比较研究[J]. 冰川冻土, 2013, 35(2): 301-309.][8] Zhou Jian, Zhang Wei, Pomeroy J W, et al. Simulating the cold regions hydrological processes in Northwest China with modular modeling method[J]. Journal of Glaciology and Geocryology, 2013, 35(2): 389-400. [周剑, 张伟, Pomeroy J W, 等. 基于模块化建模方法的寒区水文过程模拟在中国西北寒区的应用[J]. 冰川冻土, 2013, 35(2): 389-400.][9] Bie Qiang, Qiang Wenli, Wang Chao, et al. Monitoring glacier variation in the upper reaches of the Heihe River based on remote sensing in 1960-2010[J]. Journal of Glaciology and Geocryology, 2013, 35(3): 574-582. [别强, 强文丽, 王超, 等. 1960-2010年黑河流域冰川变化的遥感监测[J]. 冰川冻土, 2013, 35(3): 574-582.][10] Braithwaite R J, Zhang Yu. Sensitivity of mass balance of five Swiss glaciers to temperature changes assessed by tuning a degree-day model[J]. Journal of Glaciology, 2000, 46(152): 7-14.[11] Hock R. Temperature index melt modelling in mountain areas[J]. Journal of Hydrology, 2003, 282(1): 104-115.[12] Arnold N, Willis I C, Sharp M J, et al. A distributed surface energy balance model for a small valley glacier: I. Development and testing for Haut Glacier d'Arolla, Valais, Switzerland[J]. Journal of Glaciology, 1996, 42(140): 77-89.[13] Klok E J, Oerlemans J. Model study of the spatial distribution of the energy and mass balance of Morteratschgletscher, Switzerland[J]. Journal of Glaciology, 2002, 48(163): 505-518.[14] Arnold N S, Rees W G, Hodson A J, et al. Topographic controls on the surface energy balance of a high Arctic valley glacier[J]. Journal of Geophysical Research: Earth Surface, 2006, 111(F2), doi:10.1029/2005JF000426.[15] Hock R, Holmgren B. A distributed surface energy-balance model for complex topography and its application to Storglaciären, Sweden[J]. Journal of Glaciology, 2005, 51(172): 25-36.[16] Macdougall A H, Flowers G E. Spatial and temporal transferability of a distributed energy-balance glacier melt model[J]. Journal of Climate, 2010, 24: 1480-1498.[17] Jiang Xi, Wang Ninglian, He Jianqiao, et al. A distributed surface energy and mass balance model and its application to a mountain glacier in China[J]. Chinese Science Bulletin, 2010, 55(20): 2079-2087. [蒋熹, 王宁练, 贺建桥, 等. 山地冰川表面分布式能量-物质平衡模型及其应用[J]. 科学通报, 2010, 55(18): 1757-1765.][18] Reuter H I, Nelson A, Strobl P, et al. A first assessment of Aster GDEM tiles for absolute accuracy, relative accuracy and terrain parameters[C]//Proceedings of 2009 IEEE International Geoscience & Remote Sensing Symposium: Vol. V, Cape Town, South Africa, July 12-17, 2009, doi:10.1109/IGARSS.2009.5417688.[19] Kang Xingcheng, Ding Liangfu. The correlation between the glacial mass balance, snowline location and weather climate conditions in the Tian Shan and Qilian Shan[J]. Journal of Glaciology and Geocryology, 1981, 3(1): 53-58. [康兴成, 丁良福. 天山和祁连山的冰川物质平衡、雪线位置与天气气候的关系[J]. 冰川冻土, 1981, 3(1): 53-58.][20] Sun Weijun, Qin Xiang, Ren Jiawen, et al. Surface energy balance in the accumulation zone of the Laohugou Glacier No. 12 in the Qilian Mountains during ablation period[J]. Journal of Glaciology and Geocryology, 2011, 33(1): 38-46. [孙维君, 秦翔, 任贾文, 等. 祁连山老虎沟12号冰川积累区消融期能量平衡特征[J]. 冰川冻土, 2011, 33(1): 38-46.][21] Fröhlich C. Changes of total solar irradiance[J]. Geophysical Monograph Series, 1993, 75: 123-129.[22] Cess R D, Zhang M H, Minnis P, et al. Absorption of solar radiation by clouds: Observations versus models[J]. Science, 1995, 267(5197): 496-499.[23] Zhao Bolin, Zhang Xiaoli, Zhu Yuanjing. The cloud and radiative balance in China[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 1992, 28(3): 371-383. [赵柏林, 张晓黎, 朱元竟. 中国地区云与辐射对气候的影响[J]. 北京大学学报(自然科学版), 1992, 28(3): 371-383.][24] Cutler P M, Munro D S. Visible and near-infrared reflectivity during the ablation period on Peyto Glacier, Alberta, Canada[J]. Journal of Glaciology, 1996, 42(141): 333-340.[25] Brock B W, Willis I C, Sharp M J. Measurement and parameterization of albedo variations at Haut Glacier d'Arolla, Switzerland[J]. Journal of Glaciology, 2000, 46(155): 675-688.[26] Jonsell U, Hock R, Holmgren B. Spatial and temporal variations in albedo on Storglaciären, Sweden[J]. Journal of Glaciology, 2003, 49: 59-68.[27] Warren S G, Wiscombe W J. A model for the spectral albedo of snow. II: Snow containing atmospheric aerosols[J]. Journal of the Atmospheric Sciences, 1980, 37(12): 2734-2745.[28] Choudhury B J, Chang A T C. On the angular variation of solar reflectance of snow[J]. Journal of Geophysical Research: Oceans, 1981, 86(C1): 465-472.[29] Marshall S E, Warren S G. Parameterization of snow albedo for climate models[C]//Goodison B E, Barry R G, Dozier J. Large Scale Effects of Seasonal Snow Cover: IAHS Publication No. 166. Wallingford, UK: IAHS, 1987: 43-50.[30] Marks D, Dozier J. Climate and energy exchange at the snow surface in the alpine region of the Sierra Nevada: 2. Snow cover energy balance[J]. Water Resources Research, 1992, 28(11): 3043-3054.[31] Munro D S, Young G J. An operational net shortwave radiation model for glacier basins[J]. Water Resources Research, 1982, 18(2): 220-230.[32] Hock R, Noetzli C. Areal melt and discharge modeling of Storglaciären, Sweden[J]. Annals of Glaciology, 1997, 24: 211-216.[33] Escher-Vetter H. Energy balance calculations for the ablation period 1982 at Vernagtferner, Oetztal Alps[J]. Annals of Glaciology, 1985, 6: 158-160.[34] Blöschl G, Kirnbauer R, Gutknecht D. Distributed snowmelt simulations in an Alpine catchment: 1. Model Evaluation on the basis of snow cover patterns[J]. Water Resources Research, 1991, 27(12): 3171-3179.[35] Jiang Xi, Wang Ninglian, He Jianqiao, et al. A study of parameterization of albedo on the Qiyi Glacier in Qilian Mountains, China[J]. Journal of Glaciology and Geocryology, 2011, 33(1): 30-37. [蒋熹, 王宁练, 贺建桥, 等. 祁连山七一冰川反照率的参数化研究[J]. 冰川冻土, 2011, 33(1): 30-37.][36] Plüss C, Ohmura A. Longwave radiation on snow-covered mountainous surfaces[J]. Journal of Applied Meteorology, 1997, 36(6): 818-824.[37] Forrer J, Rotach M W. On the turbulence structure in the stable boundary layer over the Greenland ice sheet[J]. Boundary-Layer Meteorology, 1997, 85(1): 111-136.[38] Beljaars A, Holtslag A. Flux parameterization over land surface for atmospheric models[J]. Journal of Applied Meteorology, 1991, 30(3): 327-341.[39] Sun Weijun. Modelling of Surface Energy-Mass Balance on the Laohugou Glacier No. 12 in the Qilian Mountains, China[D]. PhD Thesis, Lanzhou: Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, 2012. [孙维君. 祁连山老虎沟12号冰川能量-物质平衡模拟研究[D]. 博士论文, 兰州: 中国科学院寒区旱区环境与工程研究所, 2012.][40] Munro D S. Comparison of melt energy computations and ablatometer measurements on melting ice and snow[J]. Arctic and Alpine Research, 1990, 22(2): 153-162.[41] Chen Liang, Duan Keqin, Wang Ninglian, et al. Characteristics of the surface energy balance of the Qiyi Glacier in Qilian Mountains in melting season[J]. Journal of Glaciology and Geocryology, 2007, 29(6): 882-888. [陈亮, 段克勤, 王宁练, 等. 祁连山七一冰川消融期间能量平衡特征[J]. 冰川冻土, 2007, 29(6): 882-888.][42] Zhang Jian, He Xiaobo, Ye Baisheng, et al. Recent variation of mass balance of the Xiao Dongkemadi Glacier in the Tanggula Range and its influencing factors[J]. Journal of Glaciology and Geocryology, 2013, 35(2): 263-271. [张健, 何晓波, 叶柏生, 等. 近期小冬克玛底冰川物质平衡变化及其影响因素分析[J]. 冰川冻土, 2013, 35(2): 263-271.][43] Zhang Guofei, Li Zhongqin, Wang Wenbin, et al. Change processes and characteristics of mass balance of the Vrümqi Glacier No. 1 at the headwaters of the Vrümqi River, Tianshan Mountains, during 1959-2009[J]. Journal of Glaciology and Geocryology, 2012, 34(6): 1301-1309. [张国飞, 李忠勤, 王文斌, 等. 天山乌鲁木齐河源1号冰川1959-2009年物质平衡变化过程及特征研究[J]. 冰川冻土, 2012, 34(6): 1301-1309.][44] Gao Hongkai, He Xiaobo, Ye Baisheng, et al. The simulation of HBV hydrology model in the Dongkemadi River basin, headwater of the Yangtze River[J]. Journal of Glaciology and Geocryology, 2011, 33(1): 171-181. [高红凯, 何晓波, 叶柏生, 等. 1955-2008年冬克玛底河流域冰川径流模拟研究[J]. 冰川冻土, 2011, 33(1): 171-181.] |