[1] Duan Keqin, Thompson L G, Yao T, et al. A 1000 year history of atmospheric sulfate concentrations in southern Asia as recorded by a Himalayan ice core[J]. Geophysical Research Letters, 2007, 34(1), doi:10.1029/2006GL027456.[2] Wu Xiaobo, Li Quanlian, Wang Ninglian, et al. Regional characteristics of ion concentration in glacial snowpits over the Tibetan Plateau and source analysis[J]. Environmental Science, 2011, 32(4): 971-975. [武小波, 李全莲, 王宁练, 等. 青藏高原冰川雪坑中离子浓度的区域特征及来源分析[J]. 环境科学, 2011, 32(4): 971-975.][3] Li Kaiming, Li Xuan, Wang Cuiyun, et al. Research on the environmental effect caused by climate change in the source region of the Yellow River[J]. Journal of Glaciology and Geocryology, 2013, 35(5): 1183-1192. [李开明, 李绚, 王翠云, 等. 黄河源区气候变化的环境效应研究[J]. 冰川冻土, 2013, 35(5): 1183-1192.][4] Liu Chunping, Yao Tandong, Thompson L G, et al. Microparticle concentration within the Dunde Ice Core and its relationship to dust storm and climate since the Little Ice Age[J]. Journal of Glaciology and Geocryology, 1999, 21(1): 9-14. [刘纯平, 姚檀栋, Thompson L G, 等. 敦德冰芯中微粒含量与沙尘暴及气候的关系[J]. 冰川冻土, 1999, 21(1): 9-14.][5] Liu Chunping, Yao Tandong, Xie Shucheng. Characteristics of microparticle variation and record of atmospheric environment in Dunde Ice Core[J]. Marine Geology & Quaternary Geology, 1999, 19(3): 105-113. [刘纯平, 姚檀栋, 谢树成. 祁连山敦德冰芯微粒变化特征和大气环境记录[J]. 海洋地质与第四纪地质, 1999, 19(3): 105-113.][6] Deji, Yao Tandong, Yao Ping, et al. Characteristics of climate change in warm and cold periods revealed from ice cores and meteorological records during the past 100 years on the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2013, 35(6): 1382-1390. [德吉, 姚檀栋, 姚平, 等. 冰芯和气象记录揭示的青藏高原百年来典型冷暖时段气候变化特征[J]. 冰川冻土, 2013, 35(6): 1382-1390.][7] Dong Zhiwen, Qin Dahe, Ren Jiawen, et al. Characteristics of atmospheric dust deposition in snow on the glaciers of western Qilian Mountains[J]. Acta Geographica Sinica, 2013, 68(1): 25-35. [董志文, 秦大河, 任贾文, 等. 祁连山西段冰川积雪中大气粉尘沉积特征[J]. 地理学报, 2013, 68(1): 25-35.][8] Dong Zhiwen, Ren Jiawen, Qin Dahe, et al. Chemistry characteristics and environmental significance of snow deposited on Laohugou Glacier No. 12, Qilian Mountains[J]. Journal of Glaciology and Geocryology, 2013, 35(2): 327-335. [董志文, 任贾文, 秦大河, 等. 祁连山老虎沟12号冰川积雪化学特征及环境意义[J]. 冰川冻土, 2013, 35(2): 327-335.][9] Mao Ruijuan, Wu Hongbo, He Jianqiao, et al. Spatiotemporal variation of albedo of Muztagh Glacier in the Kunlun Mountains and its relation to dust[J]. Journal of Glaciology and Geocryology, 2013, 35(5): 1133-1142. [毛瑞娟, 吴红波, 贺建桥, 等. 昆仑山木孜塔格冰川反照率变化特征及其与粉尘的关系[J]. 冰川冻土, 2013, 35(5): 1133-1142.][10] Dong Zhiwen, Li Zhongqin, Edwards R. Temporal characteristics of mineral dust particles in precipitation of Ürümqi River valley in Tian Shan, China: A comparison of alpine site and rural site[J]. Atmospheric Research, 2011, 101: 294-306.[11] Dong Zhiwen, Li Zhongqin, Wang Feiteng, et al. Characteristics of atmospheric dust deposition in snow on the glaciers of the eastern Tien Shan, China[J]. Journal of Glaciology, 2009, 55(193): 797-804.[12] Fang Xiaomin, Han Yongxiang, Ma Jinghui, et al. Dust storms and loess accumulation on the Tibetan Plateau: A case study of dust event on 4 March 2003 in Lhasa[J]. Chinese Science Bulletin, 2004, 49(9): 953-960.[13] Han Yongxiang, Fang Xiaomin, Kang Shichang, et al. Shifts of dust source regions over Central Asia and the Tibetan Plateau: Connections with the Arctic Oscillation and the westerly jet[J]. Atmospheric Environment, 2008, 42(10): 2358-2368.[14] Xu Hui, Li Zhongqin, Takeuchi N, et al. Characteristics and formation analysis of cryoconite granules: Take the Ürümqi Glacier No. 1 as an example[J]. Journal of Glaciology and Geocryology, 2013, 35(5): 1118-1125. [许慧, 李忠勤, Takeuchi N, 等. 冰尘结构特征及形成分析——以乌鲁木齐河源1号冰川为例[J]. 冰川冻土, 2013, 35(5): 1118-1125.][15] Steffensen J P. The size distributions of microparticle from selected segments of the Greenland Ice Core Project ice core representing different climatic periods[J]. Journal of Geophysical Research: Oceans, 1997, 102(C12): 26755-26763.[16] Thompson L G, Wayne L. Climatological implications of microparticle concentrations in the ice core from "Byrd" station, Western Antarctica[J]. Journal of Glaciology, 1975, 14(72): 433-444.[17] Thompson L G, Thompson E M. Microparticle concentration variations linked with climatic change: Evidence from polar ice cores[J]. Science, 1981, 212: 812-816.[18] Thompson L G, Thompson E M. A 25,000-year tropical climate history from Bolivian ice cores[J]. Science, 1998, 282: 1858-1864.[19] Uematsu M, Duce R A, Prospero J M, et al. Transport of mineral aerosol from Asia over the North Pacific Ocean[J]. Journal of Geophysical Research: Oceans, 1983, 88(C9): 5343-5352.[20] Wake C P, Mayewski P A, Li Z, et al. Modern eolian dust deposition in central Asia[J]. Tellus B, 1994, 46(3): 220-223.[21] Osada K, Iida H, Kidom M, et al. Mineral dust layers in snow at Mount Tateyama, Central Japan: Formation processes and characteristics[J]. Tellus B, 2004, 56(4): 382-392.[22] Dong Zhiwen, Li Zhongqin. Spatial and temporal variation of insoluble particles in precipitation at alpine and rural sites on the Ürümqi River valley in Tianshan Mountains of China[J]. Advances in Water Science, 2011, 22(1): 7-14. [董志文, 李忠勤. 天山高山区与郊区降水中颗粒物特征的比较[J]. 水科学进展, 2011, 22(1): 7-14.][23] Wang Jie, He Xiaobo, Ye Baisheng, et al. Variations of albedo on the Dongkemadi Glacier, Tanggula Range[J]. Journal of Glaciology and Geocryology, 2012, 34(1): 21-28. [王杰, 何晓波, 叶柏生, 等. 唐古拉山冬克玛底冰川反照率变化特征研究[J]. 冰川冻土, 2012, 34(1): 21-28.][24] Ren Jiawen. Updating assessment results of global cryospheric change from SPM of IPCC WGI Fifth Assessment Report[J]. Journal of Glaciology and Geocryology, 2013, 35(5): 1065-1067. [任贾文. 全球冰冻圈现状和未来变化的最新评估: IPCC WGI AR5 SPM发布[J]. 冰川冻土, 2013, 35(5): 1065-1067.][25] Shen Yongping, Wang Guoya. Key findings and assessment results of IPCC WGI Fifth Assessment Report[J]. Journal of Glaciology and Geocryology, 2013, 35(5): 1068-1076. [沈永平, 王国亚. IPCC第一工作组第五次评估报告对全球气候变化认知的最新科学要点[J]. 冰川冻土, 2013, 35(5): 1068-1076.][26] Zdanowica C M, Zielinski G A, Wake C P, et al. Characteristics of modem atmospheric dust deposition in snow on the Penny Ice Cap, Baffin Island, Arctic Canada[J]. Tellus B, 1998, 50(5): 506-520.[27] Gao Y, Arimoto R, Zhou M Y, et al. Relationships between the dust concentrations over Eastern Asia and the remote North Pacific[J]. Journal of Geophysical Research: Atmospheres, 1992, 97(D9): 9867-9872.[28] Patterson E M, Gillette D A. Commonalities in measured size distributions for aerosols having a soil-derived component[J]. Journal of Geophysical Research, 1977, 82(15): 2074-2082.[29] Kang Shichang, Mayewski P A, Qin Dahe, et al. Seasonal differences in snow chemistry from the vicinity of Mt. Everest, central Himalayas[J]. Atmospheric Environment, 2004, 38(18): 2819-2829.[30] Niu Hewen, He Yuanqing, Zhu Guofeng, et al. Environmental implications of the snow chemistry from Mt. Yulong, southeastern Tibetan Plateau[J]. Quaternary International, 2013, 313/314: 168-178.[31] Keene W C, Pszenny A P, Galloway J N, et al. Sea salt correction and interpretation of constituent ratios in marine precipitation[J]. Journal of Geophysical Research: Atmospheres, 1986, 91(D6): 6647-6658.[32] Jain M, Kulshrestha U C, Sarkar A K, et al. Influence of crustal aerosols on wet deposition at urban and rural sites in India[J]. Atmospheric Environment, 2000, 34: 5129-5137.[33] Migliavacca D, Teixeira E C, Wiegand F, et al. Atmospheric precipitation and chemical composition of an urban site, Guaiba hydrographic basin, Brazil[J]. Atmospheric Environment, 2005, 39: 1829-1844.[34] Flues M, Hamma P, Lemes M J L, et al. Evaluation of the rain water acidity of a rural region due to a coal-fired power plant in Brazil[J]. Atmospheric Environment, 2002, 36: 2397-2404.[35] Migliavacca D, Teixeira E C, Pires M, et al. Study of chemical elements in atmospheric precipitation in South Brazil[J]. Atmospheric Environment, 2004, 38: 1641-1656. |