[1] Raaijmakers J M, Paulitz T C, Steinberg C, et al. The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms[J]. Plant and Soil, 2009, 321(1/2): 341-361.[2] Walker T S, Bais H P, Halligan K M, et al. Metabolic profiling of root exudates of Arabidopsis thaliana[J]. Journal of Agriculture Food Chemistry, 2003, 51(9): 2548-2554.[3] Conrad R. Soil microorganisms as controllers of atmospheric tra-ce gases (H2, CO, CH4, OCS, N2O, and NO)[J]. Microbiology Review, 1996, 60(4): 609-640.[4] Le Mer J, Roger P. Production, oxidation, emission and consumption of methane by soils: A review[J]. Europe Journal of Soil Biology, 2001, 37(1): 25-50.[5] An Maozhu, Gao Wa, Wang Chunlan, et al. The natural and economic characteristics of Achnatherum splendens and its utilization and improvement[J]. Grassland of China, 2002, 24(5): 73-76. [安卯柱, 高娃, 王春兰, 等. 芨芨草的自然-经济特性及其利用与培育[J]. 中国草地, 2002, 24(5): 73-76.][6] Wang Zhongke, Yan Ping, Huang Gang, et al. Effect of artificial planting Achnatherum splendens on soil microbe quantity in desert[J]. Journal of Anhui Agriculture, 2007, 35(16): 4888-4889. [王仲科, 阎平, 黄刚, 等. 沙漠人工种植芨芨草对土壤微生物数量的影响[J]. 安徽农业科学, 2007, 35(16): 4888-4889.][7] Hu Wenge, Zhao Yadong, Yan Ping, et al. The preliminary analysis of soil microbial community of planting Achnatherum splendens (Trin) Nevski under saline and alkali land environment [J]. Ecology and Environment, 2007, 16(1): 197-200. [胡文革, 赵亚东, 闫平, 等. 盐碱地环境下芨芨草土壤微生物群落的初步分析[J]. 生态环境, 2007, 16(1): 197-200.][8] Ding Hongwei, Zhao Cheng, Huang Xiaohui. Ecological environment and desertification in Shulehe River basin[J]. Arid Zone Research, 2001, 18(2): 5-10. [丁宏伟, 赵成, 黄晓辉. 疏勒河流域的生态环境与沙漠化[J]. 干旱区研究, 2001, 18(2): 5-10.][9] Lin Gonghua, Yang Chuanhua, Chen Shengyun, et al. Large size soil animal communities of the frost soil regions in the upper reaches of Shule River[J]. Pratacultural Science, 2011, 28(10): 1864-1868. [林恭华, 杨传华, 陈生云, 等. 疏勒河上游冻土区大型土壤动物群落调查[J]. 草业科学, 2011, 28(10): 1864-1868.][10] Chen Shengyun, Liu Wenjie, Ye Baisheng, et al. Species diversity of vegetation in relation to biomass and environmental factors in the upper area of the Shule River[J]. Acta Prataculturae Sinica, 2011, 20(3): 71-83. [陈生云, 刘文杰, 叶柏生, 等. 疏勒河上游地区植被物种多样性和生物量及其与环境因子的关系[J]. 草业学报, 2011, 20(3): 71-83.][11] Sheng Yu, Li Jing, Wu Jichun, et al. Distribution patterns of permafrost in the upper area of Shule River with the application of GIS technique[J]. Journal of China University of Mining & Technology, 2010, 39(1): 32-39. [盛煜, 李静, 吴吉春, 等. 基于GIS的疏勒河流域上游多年冻土分布特征[J]. 中国矿业大学学报, 2010, 39(1): 32-39.][12] Sun Xike, Zhou Lihua, Chen Yong. The adaptive countermeasures against climate change in Shulehe River basin, China[J]. Journal of Desert Research, 2011, 31(5): 1316-1322. [孙希科, 周立华, 陈勇. 疏勒河流域气候变化情境下的适应对策[J]. 中国沙漠, 2011, 31(5): 1316-1322.][13] Zhang Gaosen, Zhang Wei, Liu Guangxiu, et al. Distribution of aerobic heterotrophic bacteria managed by environmental factors in glacier foreland[J]. Journal of Glaciology and Geocryology, 2012, 34(4): 965-971. [章高森, 张威, 刘光琇, 等. 环境因素主导着冰川前沿裸露地好氧异养细菌群落的分布[J]. 冰川冻土, 2012, 34(4): 965-971.][14] Zhang Baogui, Zhang Wei, Liu Guangxiu, et al. Effect of freeze-thaw cycles on the soil bacterial communities in different ecosystem soils in the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2012, 34(6): 1499-1507. [张宝贵, 张威, 刘光琇, 等. 冻融循环对青藏高原腹地不同生态系统土壤细菌群落结构的影响[J]. 冰川冻土, 2012, 34(6): 1499-1507.][15] Guan Songyin. Soil Enzyme and Its Study Method[M]. Beijing: China Agriculture Press, 1986: 7. [关松荫. 土壤酶及其研究法[M]. 北京: 中国农业出版社, 1986: 7.][16] Zhang Gaosen, Niu Fujun, Ma Xiaojun, et al. Phylogenetic diversity of bacteria isolated from the Qinghai-Tibet Plateau permafrost region[J]. Canadian Journal of Microbiology, 2007, 53(8): 1000-1010.[17] Wendu Rile, Zhang Jingni, Li Gang, et al. Effect of grazing disturbance on soil microorganisms and soil enzyme activities of Stipa baicalensis Rosev. steppe[J]. Acta Agrestia Sinica, 2010, 18(4): 517-522. [文都日乐, 张静妮, 李刚, 等. 放牧干扰对贝加尔针茅草原土壤微生物与土壤酶活性的影响[J]. 草地学报, 2010, 18(4): 517-522.][18] Mao Wenliang, Tai Xisheng, Wu Xiukun, et al. Altitudinal variation chatacteristics of the cultivable soil bacterial community on th upper reaches of the Heihe River, Qilian Mountains[J]. Journal of Glaciology and Geocryology, 2013, 35(2): 447-456. [毛文梁, 台喜生, 伍修琨, 等. 黑河上游祁连山区土壤可培养细菌群落生境的垂直分异特征[J]. 冰川冻土, 2013, 35(2): 447-456.][19] Dong Kang, Li Shiweng, Kang Wenlong, et al. Study of the changes in microbe amount and its affect factors in the soils along the Qinghai-Tibet Highway[J]. Journal of Glaciology and Geocryology, 2013, 35(2): 457-464. [董康, 李师翁, 康文龙, 等. 青藏公路沿线土壤微生物数量变化及其影响因素研究[J]. 冰川冻土, 2013, 35(2): 457-464.][20] Vega N W O. A review on beneficial effects of rhizosphere bacteria nutrient availability and plant nutrient uptake[J]. Revista Facultad Nacional de Agronomía-Medellín, 2007, 60(1): 3621-3643.[21] Brown M E. Seed and root bacterization[J]. Annual Review Phytopathology, 1974, 12: 181-197.[22] Sun Haixin, Liu Xunli. Microbes studies of tea rhizosphere[J]. Acta Ecologica Sinica, 2004, 24(7): 1353-1357. [孙海新, 刘训理. 茶树根际微生物研究[J]. 生态学报, 2004, 24(7): 1353-1357.][23] Stéphane U, Marc B, Claude M, et al. Pyrosequencing reveals a contrasted bacterial diversity between oak rhizosphere and surrounding soil[J]. Environmental Microbiology Reports, 2010, 2(2): 281-288.[24] Benizri E, Piutti E, Verger S, et al. Replant diseases: Bacterial community structure and diversity in peach rhizosphere as determined by metabolic and genetic fingerprinting[J]. Soil Biology and Biochemistry, 2005, 37(9): 1738-1746.[25] Marcela A F, Eugenia M, Mónica A L, et al. Molecular characterization and in situ detection of bacterial communities associated with rhizosphere soil of high altitude native Poaceae from the Andean Puna region[J]. Journal of Arid Environments, 2010, 74(10): 1177-1185.[26] Rosa M, Jack W F. Mrakiella cryoconiti gen. nov., sp. nov., a psychrophilic, anamorphic, basidiomycetous yeast from alpine and arctic habitats[J]. International Journal of Systematic and Evolutionary Microbiology, 2008, 58(12): 2977-2982.[27] Faoro H, Alves A C, Souza E M, et al. Influence of soil characteristics on the diversity of bacteria in the southern Brazilian Atlantic Forest[J]. Applied and Environmental Microbiology, 2010, 7(14): 4744-4749.[28] Staddon T, Thompson K, Jakobsen S, et al. Mycorrhizal fungal abundance is affected by long-term climatic manipulation in the field[J]. Global Change Biology, 2003, 9(2): 186-194.[29] Wang Meng, Chen Jiakuan, Li Bo. Characterization of bacterial community structure and diversity in rhizosphere soils of three plants in rapidly changing salt marshes using 16S rDNA[J]. Pedosphere, 2007, 17(5): 545-556.[30] Gundapally S R, Garcia-Pichel F. The community and phylogenetic diversity of biological soil crusts in the Colorado Plateau studied by molecular fingerprinting and intensive cultivation[J]. Microbial Ecology, 2006, 52(2): 354-357.[31] Hu Ping, Wu Xiukun, Li Shiweng, et al. Progress of studies on permafrost microbial ecology in the past 10 years[J]. Journal of Glaciology and Geocryology, 2012, 34(3): 732-739. [胡平, 伍修琨, 李师翁, 等. 近10 a来冻土微生物生态学研究进展[J]. 冰川冻土, 2012, 34(3): 732-739.][32] Liu Guangxiu, Hu Ping, Zhang Wei, et al. Variations in soil culturable bacteria communities and biochemical characteristics in the Dongkemadi glacier forefield along a chronosequence[J]. Folia Microbiology, 2012, 57(6): 485-494. |