[1] Zhang Yili, Li Bingyuan, Zheng Du. A discussion on the boundary and area of the Tibetan Plateau in China[J]. Geographical Research, 2000, 22(3): 193-198. [张镱锂, 李炳元, 郑度. 论青藏高原范围与面积[J]. 地理研究, 2000, 22(3): 193-198.] [2] Ma Yaoming, Yao Tandong, Hu Zeyong. The cooperative study on energy and water cycle over the Tibetan Plateau[J]. Advances in Earth Science, 2009, 24(11): 1280-1284. [马耀明, 姚檀栋, 胡泽勇. 青藏高原能量与水循环国际合作研究的进展与展望[J]. 地球科学进展, 2009, 24(11): 1280-1284.] [3] Zeng Qunzhu, Xie Yingqin. Thermodynamical effects on the Qinghai-Xizang Plateau from the radiation balance and heat balance of the earth's surface[J]. Chinese Science Bulletin, 1980, 25(8): 683-688. [曾群柱, 谢应钦. 从地表辐射平衡、热量平衡论青藏高原的热力作用[J]. 科学通报, 1980, 25(5): 552-554.] [4] Cheng Guodong, Zhao Lin. The problems associated with permafrost in the development of the Qinghai-Xizang Plateau[J]. Quaternary Sciences, 2000, 20(6): 521-531. [程国栋, 赵林. 青藏高原开发中的冻土问题[J]. 第四纪研究, 2000, 20(6): 521-531.] [5] Yang Meixue, Yao Taodong, He Yuanqing, et al. The water cycles between land surface and atmosphere in northern part of Tibetan Plateau[J]. Scientia Geographica Sinica, 2002, 22(1): 29-33. [杨梅学, 姚檀栋, 何元庆, 等. 藏北高原地气之间的水分循环[J]. 地理科学, 2002, 22(1): 29-33.] [6] Li Shuxun, Nan Zhuotong, Zhao Lin. Impact of soil freezing and thawing process on thermal exchange between atmosphere and ground surface[J]. Journal of Glaciology and Geocryology, 2002, 24(5): 506-511. [李述训, 南卓铜, 赵林. 冻融作用对地气系统能量交换的影响分析[J]. 冰川冻土, 2002, 24(5): 506-511.] [7] Li Guoping, Duan Tingyang, Wu Guifen. The intersity of surface heat source and surface heat balance on the western Qinghai-Xizang Plateau[J]. Scientia Geographica Sinica, 2003, 23(1): 13-18. [李国平, 段廷扬, 吴贵芬. 青藏高原西部的地面热源强度及地面热量平衡[J]. 地理科学, 2003, 23(1): 13-18.] [8] Li Ren, Yang Wen, Ji Guoliang, et al. The 40 a variational characteristics of surface heating field over Wudaoliang in the northern Tibetan Plateau[J]. Acta Energy Solaris Sinica, 2006, 26(6): 868-873. [李韧, 杨文, 季国良, 等. 40年来藏北高原五道梁地区地表加热场的变化特征[J]. 太阳能学报, 2006, 26(6): 868-873.] [9] Yao Jimin, Zhao Lin, Gu Lianglei, et al. The microclimatic characteristics in the Tanggula Pass on the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2009, 31(4): 650-658. [姚济敏, 赵林, 谷良雷, 等. 青藏高原唐古拉垭口地区小气候特征[J]. 冰川冻土, 2009, 31(4): 650-658.] [10] Zhao Lin, Cheng Guodong, Li Shuxun, et al. Thawing and freezing processes of active layer in Wudaoliang region of Tibetan Plateau[J]. Chinese Science Bulletin, 2000, 45(23): 2181-2187. [赵林, 程国栋, 李述训, 等. 青藏高原五道梁附近多年冻土活动层冻结和融化过程[J]. 科学通报, 2000, 45(11): 1205-1211.] [11] Wu Qingbai, Shen Yongping, Shi Bin. Relationship between frozen soil together with its water-heat process and ecological environment in the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2003, 25(3): 250-255. [吴青柏, 沈永平, 施斌. 青藏高原冻土及水热过程与寒区生态环境的关系[J]. 冰川冻土, 2003, 25(3): 250-255.] [12] Shang Lunyu, Lü Shihua, Li Suosuo, et al. Effect of soil freezing and thawing on surface radiation over Qinghai-Tibet Plateau[J]. Acta Energy Solaris Sinica, 2010, 31(1): 12-16. [尚伦宇, 吕世华, 李锁锁, 等. 青藏高原土壤冻融对地表辐射特征的影响分析[J]. 太阳能学报, 2010, 31(1): 12-16.] [13] Yang Meixue, Yao Tandong, He Yuanqing. The role of soil moisture-energy distribution and melting-freezing processes on seasonal shift in Tibetan Plateau[J]. Journal of Mountain Science, 2002, 20(5): 553-558. [杨梅学, 姚檀栋, 何元庆. 青藏高原土壤水热分布特征及冻融过程在季节转换中的作用[J]. 山地学报, 2002, 20(5): 553-558.] [14] Li Shuxun, Nan Zhuotong, Zhao Lin. Impact of freezing and thawing on energy exchange between the system and environment[J]. Journal of Glaciology and Geocryology, 2002, 24(2): 109-115. [李述训, 南卓铜, 赵林. 冻融作用对系统与环境间能量交换的影响[J]. 冰川冻土, 2002, 24(2): 109-115.] [15] Yang Yong, Chen Rensheng. Research review on hydrology in the permafrost and seasonal frozen regions[J]. Advances in Earth Science, 2011, 26(7): 711-723. [阳勇, 陈仁升. 冻土水文研究进展[J]. 地球科学进展, 2011, 26(7): 711-723.] [16] Jorgenson M T, Racine C H, Walters J C, et al. Permafrost degradation and ecological changes associated with a warming climate in central Alaska[J]. Climatic Change, 2001, 48(4): 551-579. [17] Walker D, Jia G J, Epstein H, et al. Vegetation-soil-thaw-depth relationships along a low arctic bioclimate gradient, Alaska: synthesis of information from the ATLAS studies[J]. Permafrost and Periglacial Processes, 2003, 14(2): 103-123. [18] Yang Yong, Chen Rensheng, Ji Xibin, et al. Heat and water transfer processes on alpine meadow frozen grounds[J]. Advances in Water Science, 2010, 21(1): 30-35. [阳勇, 陈仁升, 吉喜斌, 等. 黑河高山草甸冻土带水热传输过程[J]. 水科学进展, 2010, 21(1): 30-35.] [19] He Ping, Cheng Guodong, Zhu Yuanlin. The progress of study on heat and mass transfer in freezing soils[J]. Journal of Glaciology and Geocryology, 2001, 23(1): 92-98. [何平, 程国栋, 朱元林. 土体冻结过程中的热质迁移研究进展[J]. 冰川冻土, 2001, 23(1): 92-98.] [20] Wang Chenghai, Shi Rui, Zuo Hongchao. Analysis on simulation of characteristic of land surface in western Qinghai-Xizang Plateau during frozen and thawing[J]. Plateau Meteorology, 2008, 27(2): 239-248. [王澄海, 师锐, 左洪超. 青藏高原西部冻融期陆面过程的模拟分析[J]. 高原气象, 2008, 27(2): 239-248.] [21] Luo Lihui, Zhang Yaonan, Zhou Jian, et al. Simulation and application of the land surface model CLM driven by WRF in the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2013, 35(3): 553-564. [罗立辉, 张耀南, 周剑, 等. 基于WRF驱动的CLM模型对青藏高原地区陆面过程模拟研究[J]. 冰川冻土, 2013, 35(3): 553-564.] [22] Yang Jianping, Yang Suiqiao, Li Man, et al. Vulnerability of frozen ground to climate change in China[J]. Journal of Glaciology and Geocryology, 2013, 35(6): 1436-1445. [杨建平, 杨岁桥, 李曼, 等. 中国冻土对气候变化的脆弱性[J]. 冰川冻土, 2013, 35(6): 1436-1445.] [23] Liu Yang, Zhao Lin, Li Ren. Simulation of the soil water-thermal features within the active layer in Tanggula region, Tibetan Plateau, by using SHAW model[J]. Journal of Glaciology and Geocryology, 2013, 35(2): 280-290. [刘杨, 赵林, 李韧. 基于SHAW模型的青藏高原唐古拉地区活动层土壤水热特征模拟[J]. 冰川冻土, 2013, 35(2): 280-290.] [24] Zhang Wei, Zhou Jian, Wang Genxu, et al. Monitoring and modeling the influence of snow cover and organic soil on the active layer of permafrost on the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2013, 35(3): 528-540. [张伟, 周剑, 王根绪, 等. 积雪和有机质土对青藏高原冻土活动层的影响[J]. 冰川冻土, 2013, 35(3): 528-540.] [25] Li Yuanshou, Wang Genxu, Zhao Lin, et al. Response of soil moisture in the permafrost active layer to the change of alpine meadow coverage on the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2010, 32(1): 157-165. [李元寿, 王根绪, 赵林, 等. 青藏高原多年冻土活动层土壤水分对高寒草甸覆盖变化的响应[J]. 冰川冻土, 2010, 32(1): 157-165.] [26] Yue Guangyang, Zhao Lin, Zhao Yonghua, et al. Relationship between soil properties in permafrost active layer and surface vegetation in Xidatan on the Qinghai-Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2013, 35(3): 565-573. [岳广阳, 赵林, 赵拥华, 等. 青藏高原西大滩多年冻土活动层土壤性状与地表植被的关系[J]. 冰川冻土, 2013, 35(3): 565-573.] [27] Li Ren, Zhao Lin, Ding Yongjian, et al. Impact of surface energy variation on thawing processes within active layer of permafrost[J]. Journal of Glaciology and Geocryology, 2011, 33(6): 1235-1242. [李韧, 赵林, 丁永建, 等. 地表能量变化对多年冻土活动层融化过程的影响[J]. 冰川冻土, 2011, 33(6): 1235-1242.] [28] Li Ren, Zhao Lin, Ding Yongjian, et al. Temporal and spatial variations of the active layer along the Qinghai-Tibet Highway in a permafrost region[J]. Chinese Science Bulletin, 2012, 57(35): 4609-4616. [李韧, 赵林, 丁永建, 等. 青藏公路沿线多年冻土区活动层动态变化及区域差异特征[J]. 科学通报, 2012, 57(30): 2864-2871.] [29] Hong Tao, Liang Sihai, Sun Yu, et al. Analyzing the factors that impact on the heat conductivity coefficient and applying them to simulate the depth of permafrost active layer in the headwaters of the Yellow River[J]. Journal of Glaciology and Geocryology, 2013, 35(4): 824-833. [洪涛, 梁四海, 孙禹, 等. 黄河源区多年冻土热传导系数影响因素分析及其在活动层厚度模拟中的应用[J]. 冰川冻土, 2013, 35(4): 824-833.] [30] Zhang Zhongqiong, Wu Qingbai. Predicting changes of active layer thickness on the Qinghai-Tibet Plateau as climate warming[J]. Journal of Glaciology and Geocryology, 2012, 34(3): 505-511. [张中琼, 吴青柏. 气候变化情景下青藏高原多年冻土活动层厚度变化预测[J]. 冰川冻土, 2012, 34(3): 505-511.] [31] Wang Shaoling, Yang Meixue, Koike T, et al. Application of time-domain-reflectometer to researching moisture variation in active layer on the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2000, 22(1): 78-84. [王绍令, 杨梅学, 小池俊雄, 等. 时域反射仪在监测青藏高原活动层水分变化过程中的应用[J]. 冰川冻土, 2000, 22(1): 78-84.] [32] Li Ren, Zhao Lin, Ding Yongjian, et al. A study on soil thermodynamic characteristics of active layer in northern Tibetan Plateau[J]. Chinese Journal of Geophysics, 2010, 53(5): 1060-1072. [李韧, 赵林, 丁永建, 等. 青藏高原北部活动层土壤热力特性的研究[J]. 地球物理学报, 2010, 53(5): 1060-1072.] [33] Lachenbruch A H, Sass J H, Marshall B V, et al. Permafrost, heat flow, and the geothermal regime at Prudhoe Bay, Alaska[J]. Journal of Geophysical Research: Solid Earth, 1982, 87(B11): 9301-9316. [34] Liu Shuai, Yu Guirui, Asonuma J, et al. The thawing-freezing processes and soil moisture distribution of the steppe in central Mongolian Plateau[J]. Acta Pedologica Sinica, 2009, 46(1): 46-51. [刘帅, 于贵瑞, 浅沼顺, 等. 蒙古高原中部草地土壤冻融过程及土壤含水量分布[J]. 土壤学报, 2009, 46(1): 46-51.] [35] Yang Meixue, Yao Tandong, Gou Xiaohua, et al. Diurnal freeze/thaw cycles of the ground surface on the Tibetan Plateau[J]. Chinese Science Bulletin, 2007, 52(1): 136-139. [杨梅学, 姚檀栋, Hirose N, 等. 青藏高原表层土壤的日冻融循环[J]. 科学通报, 2006, 51(16): 1974-1976.] [36] Ding Yongjian, Ye Baisheng, Liu Shiyin, et al. Monitoring of frozen soil hydrology in macro-scale in the Qinghai-Xizang Plateau[J]. Chinese Science Bulletin, 2000, 45(12): 1143-1149. [丁永建, 叶柏生, 刘时银, 等. 青藏高原大尺度冻土水文监测研究[J]. 科学通报, 2000, 45(2): 208-214.] [37] Hinkel K M, Paetzold F, Nelson F E, et al. Patterns of soil temperature and moisture in the active layer and upper permafrost at Barrow, Alaska: 1993-1999[J]. Global and Planetary Change, 2001, 29(3/4): 293-309. [38] Zhou Yuhua, Ye Baisheng, Hu Heping. Review of the study on land surface process in soil freezing and thawing[J]. Advances in Water Science, 2005, 16(6): 887-891. [周余华, 叶柏生, 胡和平. 土壤冻融条件下的陆面过程研究综述[J]. 水科学进展, 2005, 16(6): 887-891.] [39] Yang Meixue, Yao Tandong, Gou Xiaohua. Soil melting-freezing processes and water heat distribution feature along the Qinghai-Xizang Highway[J]. Progress in Natural Science, 2000, 10(5): 443-450. [杨梅学, 姚檀栋, 勾晓华. 青藏公路沿线土壤的冻融过程及水热分布特征[J]. 自然科学进展, 2000, 10(5): 443-450.] [40] Wang Chenghai, Shang Dacheng. Effect of the variation of the soil temperature and moisture in the transition from dry-season to wet-season over northern Tibet Plateau[J]. Plateau Meteorology, 2007, 26(4): 677-685. [王澄海, 尚大成. 藏北高原土壤温、湿度变化在高原干湿季转换中的作用[J]. 高原气象, 2007, 26(4): 677-685.] [41] Fukuda M, Orhun A, Luthin J N. Experimental studies of coupled heat and moisture transfer in soils during freezing[J]. Cold Regions Science and Technology, 1980, 3(2/3): 223-232. [42] Feng Baoping, Zhang Zhanyu, Zhang Jianfeng, et al. Review of effect of temperature on soil water movement[J]. Advances in Water Science, 2002, 13(5): 643-648. [冯宝平, 张展羽, 张建丰, 等. 温度对土壤水分运动影响的研究进展[J]. 水科学进展, 2002, 13(5): 643-648.] [43] Gao Hongbei, Shao Ming'an. Effect of temperature on soil moisture parameters[J]. Advances in Water Science, 2011, 22(4): 484-494. [高红贝, 邵明安. 温度对土壤水分运动基本参数的影响[J]. 水科学进展, 2011, 22(4): 484-494.] [44] Romanovsky V, Osterkamp T. Effects of unfrozen water on heat and mass transport processes in the active layer and permafrost[J]. Permafrost and Periglacial Processes, 2000, 11(3): 219-239. [45] Hoekstra P. Moisture movement in soils under temperature gradients with the cold-side temperature below freezing[J]. Water Resources Research, 1966, 2(2): 241-250. |