[1] Ma Wei, Liu Duan, Wu Qingbai. Monitoring and analysis of embankment deformation in permafrost regions of Qinghai-Tibet Railway[J]. Rock and Soil Mechanics, 2008, 29(3): 571-579. [马巍, 刘端, 吴青柏. 青藏铁路冻土路基变形监测与分析[J]. 岩土力学, 2008, 29(3): 571-579.] [2] Wu Qingbai, Liu Yongzhi, Zhang Jianming, et al. A review of recent frozen soil engineering in permafrost regions along Qinghai-Tibet Highway, China[J]. Permafrost and Periglacial Process, 2002, 13: 199-205. [3] Cheng Guodong, Yang Chengsong. Mechanics related with frozen ground in construction of Qinghai-Tibet Railway[J]. Mechanics in Engineering, 2006, 28(3): 1-8. [程国栋, 杨成松. 青藏铁路建设中的冻土力学问题[J]. 力学与实践, 2006, 28(3): 1-8.] [4] Ma Wei, Mu Yanhu, Wu Qingbai, et al.Characteristics and mechanisms of embankment deformation along the Qinghai-Tibet Railway in permafrost regions[J]. Cold Regions Science and Technology, 2011, 67: 178-186. [5] Morgenstern N R, Nixon J F. One dimensional consolidation of thawing soils[J]. Canadian Geotechnical Journal, 1971, 8(4): 558-565. [6] Nixon J F, Morgenstern N R. Practical extensions to a theory of consolidation for thawing soils[C]//Proceedings of 2nd International Conference on Permafrost: USSR Contribution. Washington, DC: National Academy of Sciences, 1978: 369-377. [7] Foriero A, Ladanyi B. FEM assessment of large-strain thaw consolidation[J]. Journal of Geotechnical Engineering, 1995, 121(2): 126-138. [8] Sykes J F, Lennox W C, Charlwood R G. Finite element permafrost thaw settlement model[J]. Journal of the Geotechnical Engineering Division, 1974, 100(11): 1185-1201. [9] Liu Shiwei, Zhang Jianming. Review on physic-mechanical properties of warm frozen soil[J]. Journal of Glaciology and Geocryology, 2012, 34(1): 120-129. [刘世伟, 张建明. 高温冻土物理力学特性研究现状[J]. 冰川冻土, 2012, 34(1): 120-129.] [10] Su Kai, Zhang Jianming, Liu Shiwei, et al. Compressibility of warm and ice-rich frozen soil[J]. Journal of Glaciology and Geocryology, 2013, 35(2): 369-375. [苏凯, 张建明, 刘世伟, 等. 高温-高含冰量冻土压缩变形特性研究[J]. 冰川冻土, 2013, 35(2): 369-375.] [11] Carter J P, Small J C, Booker J R. A theory of finite elastic consolidation[J]. International Journal of Soils and Structures, 1977, 13(5): 467-478. [12] Xie Yongli. Large Deformation Consolidation Theory and Finite Element Method[M]. Beijing: China Communications Press, 1998. [谢永利. 大变形固结理论及其有限元法[M]. 北京: 人民交通出版社, 1998.] [13] Xie Xinyu, Zhu Xiangrong, Xie Kanghe, et al. New developments of one-dimensional large strain consolidation theories[J]. Chinese Journal of Geotechnical Engineering, 1997, 19(4): 30-38. [谢新宇, 朱向荣, 谢康和, 等. 饱和土体一维大变形固结理论新进展[J]. 岩土工程学报, 1997, 19(4): 30-38.] [14] Yao Xiaoliang. Theoretical and Application Study on Thaw Settlement of Frozen Soils[D]. Lanzhou: Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, 2010. [姚晓亮. 冻土融化沉降理论与应用研究[D]. 兰州: 中国科学院寒区旱区环境与工程研究所, 2010.] [15] Ding Zhouxiang. Continuum Consolidation Theory and Its Engineering Applications[D]. Hangzhou: Zhejiang University, 2005. [丁洲祥. 连续介质固结理论及其工程应用[D]. 杭州: 浙江大学, 2005.] [16] Cheng Guodong, Zhang Jianming, Sheng Yu, et al. Principles of thermal insulation for permafrost preservation[J]. Journal of Shanghai Normal University (Natural Sciences), 2003, 32(4): 1-6. [程国栋, 张建明, 盛煜, 等. 保护冻土的保温原理[J]. 上海师范大学学报(自然科学版), 2003, 32(4): 1-6.] [17] Zhang Jianming, Zhang Jinzhao, Liu Yongzhi. Study on the reasonable embankment height of Qinghai-Tibet Railway in permafrost regions[J]. China Railway Science, 2006, 27(5): 28-34. [张建明, 章金钊, 刘永智. 青藏铁路冻土路基合理路堤高度研究[J]. 中国铁道科学, 2006, 27(5): 28-34.] [18] Yang Chengsong, Cheng Guodong. Probabilistic prediction of the impacts of climate change on permafrost stability along the Qinghai-Tibet Railway (I): Active layer thickness and ground temperature[J]. Journal of Glaciology and Geocryology, 2011, 33(3): 461-468. [杨成松, 程国栋. 气候变化条件下青藏铁路沿线多年冻土概率预报(I): 活动层厚度与地温[J]. 冰川冻土, 2011, 33(3): 461-468.] [19] Qin Dahe. The Comprehensive Evaluating Report on the Environment Evolvement in West China[M]. Beijing: Science Press, 2002. [秦大河. 中国西部环境演变评估综合报告[M]. 北京: 科学出版社, 2002.] [20] Zhang Mingyi, Lai Yuanming, Liu Zhiqiang, et al. Nonlinear analysis for the cooling effect of Qinghai-Tibetan railway embankment with different structures in permafrost regions[J]. Cold Regions Science and Technology, 2005, 42: 237-249. [21] Xu Xiaozu, Wang Jiacheng, Zhang Lixin. Frozen Soil Physics[M]. Beijing: Science Press, 2010. [徐敩祖, 王家澄, 张立新. 冻土物理学[M]. 北京: 科学出版社, 2010.] [22] Huang Zhijun, Lai Yuanming, Li Shuangyang, et al. Dynamic response of embankment in permafrost regions under traffic load[J]. Journal of Glaciology and Geocryology, 2012, 34(2): 418-426. [黄志军, 赖远明, 李双洋, 等. 交通荷载作用下冻土路基动力响应分析[J]. 冰川冻土, 2012, 34(2): 418-426.] [23] Mu Yanhu, Ma Wei, Wu Qingbai, et al. Thermal regime of conventional embankments along the Qinghai-Tibet Railway in permafrost regions[J]. Cold Regions Science and Technology, 2012, 70: 123-131. [24] Cheng Guodong. A roadbed cooling approach for the construction of Qinghai-Tibet Railway[J]. Cold Regions Science and Technology, 2005, 42: 169-176. [25] Gibson R E, Schiffman R L, Cargill K W. The theory of one-dimensional consolidation of saturated clays. II: Finite nonlinear consolidation of thick homogeneous layers[J]. Canadian Geotechnical Journal, 1981, 18(2): 280-293. [26] Li Zhihui, Chen Xiaoping, Zhou Qiujuan. Permeability of saturated soft clays and its effects on one-dimensional large strain consolidation[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(S2): 3746-3752. [黎志辉, 陈晓平, 周秋娟. 饱和软黏土渗透特性及对一维大变形固结影响[J]. 岩石力学与工程学报, 2009, 28(S2): 3746-3752.] [27] Yi Xin, Yu Wenbing, Chen Lin, et al. Influence of boundary conditions on the thermal stability of embankments in permafrost regions[J]. Journal of Glaciology and Geocryology, 2014, 36(2): 369-375. [易鑫, 喻文兵, 陈琳, 等. 边界条件对多年冻土路基热稳定性的影响分析[J]. 冰川冻土, 2014, 36(2): 369-375.] |