X img

官方微信

img

群号:冰川冻土交流群

QQ群:218834310

高级检索
作者投稿 专家审稿 编辑办公 编委办公 主编办公

冰川冻土 ›› 2014, Vol. 36 ›› Issue (6): 1385-1393.doi: 10.7522/j.issn.1000-0240.2014.0165

• 冰冻圈与全球变化 • 上一篇    下一篇

北极涛动对青藏高原冬季变暖的影响

焦洋1,2, 游庆龙1,2,3, 林厚博1,2, 闵锦忠1,3   

  1. 1. 南京信息工程大学 气象灾害教育部重点实验室, 江苏 南京 210044;
    2. 南京信息工程大学 中英气候变化与评估研究所, 江苏 南京 210044;
    3. 南京信息工程大学 气象灾害预报预警与评估协同创新中心, 江苏 南京 210044
  • 收稿日期:2014-06-08 修回日期:2014-10-03 出版日期:2014-12-25 发布日期:2015-01-20
  • 通讯作者: 游庆龙, E-mail: qinglong.you@nuist.edu.cn E-mail:qinglong.you@nuist.edu.cn
  • 作者简介:焦洋(1989-),女,山东济南人,2013年毕业于南京信息工程大学,现为在读硕士研究生,主要从事气候变化与极端天气研究.E-mail:jiaoyang0621@foxmail.com
  • 基金资助:

    国家自然科学基金项目(41201072); 江苏省特聘教授项目; 江苏省杰出青年基金项目(BK20140047); 江苏高校优势学科建设工程资助项目(PAPD)资助

The Arctic Oscillation effect on winter warming over the Tibetan Plateau

JIAO Yang1,2, YOU Qinglong1,2,3, LIN Houbo1,2, MIN Jinzhong1,3   

  1. 1. Key Laboratory of Meteorological Disaster, Ministry of Education, Nanjing University of Information Science and Technology, Nanjing 210044, China;
    2. Institute of Climate Change and Evaluation Between China and UK, Nanjing University of Information Science and Technology, Nanjing 210044, China;
    3. Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing 210044, China
  • Received:2014-06-08 Revised:2014-10-03 Online:2014-12-25 Published:2015-01-20

摘要:

基于青藏高原地区1960-2010年高分辨率(0.5°×0.5°)的逐日地面气温格点资料以及 1960-2010年NCEP/NCAR全球月平均海平面气压场、高度场、风场的再分析格点资料(2.5°×2.5°), 通过计算青藏高原(74.75°~104.25° E, 26.75°~40.25° N)冬季地面温度平均值经标准化处理后得到的区域冬季气温强度指数, 分析了冬季北极涛动(AO)、西伯利亚高压与同期青藏高原地面气温的特征和关系. 结果表明: AO为负(正)相位时, 中高纬西风气流偏弱(强), 有(不)利于极地冷空气向南输送, 西伯利亚地区源地冬季风偏强(弱), 青藏高原冬季气温指数减小(增大), 地面气温偏低(高). 对AO作M-K突变分析, 发现其突变年份为1975年, 通过对突变年份前后高度场和风场作差值场分析, 结果显示: 冬季AO处于高指数时期, 500 hPa上, 欧洲东部槽变浅, 青藏高原北部的高压脊减弱, 环流呈纬向发展, 青藏高原上盛行偏南风, 气温偏高, 青藏高原地区为暖冬期; 200 hPa 上, 青藏高原东部的槽明显加深, 使得青藏高原地区对流层顶至平流层底的环流趋势以经向发展为主, 该区域主要受到偏北的急流控制, 易导致降温.

关键词: 北极涛动, 青藏高原, 西伯利亚高压, 气温指数

Abstract:

Tibetan Plateau (TP), the study region of this paper, is defined as 74.75°~104.25° E, 26.75°~40.25° N. Based on the daily gridded surface air temperature data (0.5°×0.5°) and the data of the global monthly mean sea level pressure field, height field and wind field (2.5°×2.5°) from NCEP/NCAR reanalysis data from 1960 to 2010, the mean surface temperature in winter in the TP is calculated. The index of winter temperature in the TP is recognized as the standardized time series for the whole TP. The relationship between Arctic Oscillation (AO) in winter and the surface air temperature in the TP over the same period has been investigated. The results show that when the phase of AO is negative (positive), the westerly flow in the mid-high latitudes is weak (strong), which is conducive (not conducive) to drive the polar cold air southwards. It is shown that when the AO index is in low value period, the mean surface air temperature in winter in the TP is low also. M-K analysis on the AO mutation shows that the abrupt year was 1975. Significance tests at 500 hPa and 200 hPa height fields and wind field before and after the mutation year find that when the height field associates with high AO index in winter, at 500 hPa, the trough in the Eastern Europe shallows and the ridge in the northern TP weakens with zonal developing circulation, the north wind of middle troposphere is weak with higher air temperature, consistent with warm winter in the TP; at 200 hPa, the eastern trough over the east TP significantly deepens, resulting in meridional developing circulation between the tropopause and the end of the stratosphere.

Key words: Arctic Oscillation, Tibetan Plateau, Siberia high pressure, air temperature index

中图分类号: 

  • P461+2