[1] Harsch M A, Hulme P E, McGlone M S, et al. Are treelines advancing? A global meta-analysis of treeline response to climate warming[J]. Ecology Letters, 2009, 12:1040-1049.[2] MacDonald G M, Velichko A A, Kremenetski C V. Holocene treeline history and climate change across northern Eurasia[J]. Quaternary Research, 2000, 53:302-311.[3] Esper J, Schweingruber F H. Large-scale treeline changes recorded in Siberia[J]. Geophysical Research Letters, 2004, 31:302-312.[4] Körner C. The use of 'altitude’ in ecological research[J]. Trends in Ecology and Evolution, 2007, 22:569-574.[5] Körner C, Larcher W. Plant life in cold climates[J]. Symposia of the Society For Experimental Biology, 1988, 42:25-57.[6] Körner C. Alpine plant life:Functional plant ecology of high mountain ecosystems[M]. 2nd ed. Berlin:Springer, 2003.[7] Byars S G, Papst W, Hoffmann A A. Local adaptation and cogradient selection in the alpine plant, Poa hiemata, along a narrow altitudinal gradient[J]. Evolution, 2007, 61:2925-2941.[8] Salzer M W, Hughes M K, Bunn A G, et al. Recent unprecedented tree-ring growth in bristlecone pine at the highest elevations and possible causes[J]. Proceeding of National Academy of Sciences of the United States of America, 2009, 106:20348-20353.[9] Deji, Yao Tandong, Yao Ping, et al. Characteristics of climate change in warm and cold periods revealed from ice cores and meteorological records during the past 100 years on the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2013, 35(6):1382-1390. [德吉, 姚檀栋, 姚平, 等. 冰芯和气象记录揭示的青藏高原百年来典型冷暖时段气候变化特征[J]. 冰川冻土, 2013, 35(6):1382-1390.][10] Wang Chenghai, Jin Shuanglong, Shi Hongxia. Area change of the frozen ground in China in the next 50 years[J]. Journal of Glaciology and Geocryology, 2014, 36(1):1-8. [王澄海, 靳双龙, 施红霞. 未来50 a中国地区冻土面积分布变化[J]. 冰川冻土, 2014, 36(1):1-8.][11] Ackerly D D, Knight C A, Weiss S B, et al. Leaf size, specific leaf area and microhabitat distribution of chaparral woody plants:contrasting patterns in species level and community level analyses[J]. Oecologia, 2002, 130:449-457.[12] Bao Le, Liu Yanhong. Comparison of leaf functional traits in different forest communities in Mt. Dongling of Beijing[J]. Acta Ecologica Sinica, 2009, 29:3692-3703. [宝乐, 刘艳红. 东灵山地区不同森林群落叶功能性状比较[J]. 生态学报, 2009, 29:3692-3703.][13] Luo Lu, Shen Guozhen, Xie Zongqiang, et al. Leaf functional traits of four typical forests along the altitudinal gradients in Mt. Shennongjia[J]. Acta Ecologica Sinica, 2011, 31:6420-6428. [罗璐, 申国珍, 谢宗强, 等. 神农架海拔梯度上4种典型森林的乔木叶片功能性状特征[J]. 生态学报, 2011, 31:6420-6428.][14] Zhao C M, Chen L T, Ma F, et al. Altitudinal differences in the leaf fitness of juvenile and mature alpine spruce trees (Picea crassifolia)[J]. Tree Physiology, 2008, 28:133-141.[15] Meng Tingting, Ni Jian, Wang Guohong. Plant functional traits, environments and ecosystem functioning[J]. Journal of Plant Ecology, 2007, 31:150-165. [孟婷婷, 倪健, 王国宏. 植物功能性状与环境和生态系统功能[J]. 植物生态学报, 2007, 31:150-165.][16] Francey R J, Farquhar G D. An explanation of 13C/12C variation in tree rings[J]. Nature, 1992, 297:28-31.[17] Warren C R, McGrath J F, Adams M A. Water availability and carbon isotope discrimination in conifers[J]. Oecologia, 2001, 127:476-486.[18] Evans J R. Photosynthesis and nitrogen relationship in leaves of C3 plants[J]. Oecologia, 1989, 78:1-19.[19] Friend A D, Woodward F I. Evolutionary and ecophysiological responses of mountain plants to the growing season environment[J]. Advances in Ecological Research, 1990, 20:59-124.[20] Lin Ling, Chen Litong, Zheng Weilie, et al. Altitudinal variation of the Foliar δ13C in Abies georgei var. smithii and Quercus aquifolioides in Tibet[J]. Journal of Glaciology and Geocryology, 2008, 30(6):1048-1054. [林玲, 陈立同, 郑伟烈, 等. 西藏急尖长苞冷杉与川滇高山栎叶片δ13C沿海拔梯度的变化[J]. 冰川冻土, 2008, 30(6):1048-1054.][21] Zheng Wuanjun. Tree index of China[M]. Beijing:China Forest Publishing House, 1983:361. [郑万钧. 中国树木志[M]. 北京:中国林业出版社, 1983:361.][22] Zhou Yiliang, Li Shiyou. Forestry in China[M]. Beijing:Science Press, 2000. [周以良, 李世友. 中国的森林[M]. 北京:科学出版社, 2000.][23] Shao Xuemei, Fang Xiuqi, Liu Hongbin, et al. Dating the 1 000-year-old Qilian juniper in mountains along the eastern margin of the Qaidam Basin[J]. Acta Geographica Sinica, 2003, 58(1):90-100. [邵雪梅, 方修琦, 刘洪滨, 等. 柴达木东缘山地千年祁连圆柏年轮定年分析[J]. 地理学报, 2003, 58(1):90-100.][24] Zheng Yonghong, Liang Eryuan, Zhu Haifeng, et al. Response of radial growth of Qilian juniper to climatic change under different habitats[J]. Journal of Beijing Forestry University, 2008, 30(3):7-12. [郑永宏, 梁尔源, 朱海峰, 等. 不同生境祁连圆柏径向生长对气候变化的响应[J]. 北京林业大学学报, 2008, 30(3):7-12.][25] Zheng Yonghong, Zhu Haifeng, Zhang Yongxiang, et al. Relationships between Sabina przewalskii radial growth and climatic factors at upper timberlines in eastern mountainous region of Qaidam Basin[J]. Chinese Journal of Applied Ecology, 2009, 20(3):507-512. [郑永宏, 朱海峰, 张永香, 等. 柴达木盆地东缘山地祁连圆柏林上限树木径向生长与气候要素的关系[J]. 应用生态学报, 2009, 20(3):507-512.][26] Chen Tuo, Chen Fahu, An Lizhe, et al. Variations of tree-ring and foliar δ13C values of Sabina przewalskii with altitude[J]. Journal of Glaciology and Geocryology, 2004, 26(6):767-771. [陈拓, 陈发虎, 安黎哲, 等. 不同海拔祁连圆柏树轮和叶片δ13C值的变化[J]. 冰川冻土, 2004, 26(6):767-771.][27] Chen Tuo, Qin Dahe, He Yuanqing, et al. The pattern of stable carbon isotope ratios in Sabina przewalskii[J]. Journal of Glaciology and Geocryology, 2002, 24(5):571-573. [陈拓, 秦大河, 何元庆, 等. 祁连圆柏中稳定碳同位素分布特征[J]. 冰川冻土, 2002, 24(5):571-573.][28] Wen Longying, Chen Tuo, Zhang Manxiao, et al. Variations of pigments and stable-carbon isotope ratios in Sabina przewalskii under different environments[J]. Journal of Glaciology and Geocryology, 2010, 32(4):823-828. [文陇英, 陈拓, 张满效, 等. 不同生境下祁连圆柏叶片色素和稳定碳同位素组成的变化[J]. 冰川冻土, 2010, 32(4):823-828.][29] Zhang Tao, An Lizhe, Chen Tuo, et al. Antioxidative system in leaves of Picea Crassifolia and Sabina Przewalskii along an altitudinal gradient[J]. Acta Phytoecologica Sinica, 2009, 33(4):802-811. [张涛, 安黎哲, 陈拓, 等. 不同海拔青海云杉与祁连圆柏叶片抗氧化系统[J]. 植物生态学报, 2009, 33(4):802-811.][30] Chen Xiaoli, Zhang Peng, Zhang Tao, et al. Study on antioxidase activities of Picea crassifolia and Sabina przewalskii at different altitude gradients[J]. Journal of Gansu Agricultural University, 2009, 44(1):118-122. [陈晓丽, 张鹏, 张涛, 等. 不同海拔青海云杉与祁连圆柏叶片抗氧化酶活性的研究[J]. 甘肃农业大学学报, 2009, 44(1):118-122.][31] Liang E Y, Shao X M, Dieter E, et al. Topography and species-dependent growth responses of Sabina przewalskii and Picea crassifolia to climate on the northeast Tibetan Plateau[J]. Forest Ecology and Management, 2006, 236:268-277.[32] Woodward F I. The differential temperature responses of the growth of certain plant species from different altitudes. II:Analysis of the control and morphology of leaf extension and specific leaf area of Phleum bertolonii D.C. and P. alpinum L[J]. New Phytologist, 1979, 82:397-405.[33] Woodward F I. The significance of interspecific differences in specific leaf area to the growth of selected herbaceous species from different altitudes[J]. New Phytologist, 1983, 95:313-323.[34] Woodward F I. Ecophysiological studies on the shrub Vaccinium myrtillus L. taken from a wide altitudinal range[J]. Oecologia, 1986, 70:580-586.[35] Körner C, Bannister P, Mark A F. Altitudinal variation in stomatal conductance, nitrogen content and leaf anatomy in different plant life forms in New Zealand[J]. Oecologia, 1986, 69:577-588.[36] Körner C, Neumayer M, Menendez-Riedl S P, et al. Functional morphology of mountain plants[J]. Flora, 1989, 182:353-383.[37] Bowman W D, Keller A, Nelson M. Altitudinal variation in leaf gas exchange, nitrogen and phosphorus concentrations, and leaf mass per area in populations of Frasera speciosa[J]. Arctic Antarctic and Alpine Research, 1999, 31:191-195.[38] Körner C, Farquhar G D, Roksandic Z. A global survey of carbon isotope discrimination in plants from high altitude[J]. Oecologia, 1988, 74:623-632.[39] Sparks J P, Ehleringer J R. Leaf carbon isotope discrimination and nitrogen content of riparian trees along an elevational gradient[J]. Oecologia, 1997, 109:362-367.[40] Hultine K R, Marshall J D. Altitude trends in conifer leaf morphology and stable carbon isotope composition[J]. Oecologia, 2000, 123:32-40.[41] Ferrio J P, Florit A, Vege A, et al. δ13C and tree-ring width reflect different drought responses in Quercus ilex and Pinus halepensis[J]. Oecologia, 2003, 137:512-518.[42] Chen Yinping, Chen Tuo, Zhang Manxiao, et al. The relationship of seasonal changes in water and organic osmotica to freezing tolerance in the leaves of Sabina[J]. Bulletin of Botanical Research, 2008, 28(3):336-341. [陈银萍, 陈拓, 张满效, 等. 圆柏属常绿木本植物叶片水分、 渗透调节物质的季节变化与抗冷冻性的关系[J]. 植物研究, 2008, 28(3):336-341.][43] Peng J F, Gou X H, Chen F H, et al Altitudinal variability of climate-tree growth relationships along a consistent slope of Anyemaqen Mountains, northeastern Tibetan Plateau[J]. Dendrochronologia, 2008, 26:87-96.[44] van de Wega M J, Meir P, Gracea J, et al. Altitudinal variation in leaf mass per unit area, leaf tissue density and foliar nitrogen and phosphorus content along an Amazon-Andes gradient in Peru[J]. Plant Ecology and Diversity, 2009, 2:243-254.[45] Streb P, Shang W, Feierabend J, et al. Divergent strategies of photoprotection in high-mountain plants[J]. Planta, 1998, 207:313-324.[46] Cordell S, Goldstein G, Mueller-Dombois D, et al. Physiological and morphological variation in Metrosideros polymorpha, a dominant Hawaiian tree species, along an altitudinal gradient:role of phenotypic plasticity[J]. Oecologia, 1998, 113:188-196.[47] Warren R J, II. Mechanisms driving understorey evergreen herb distributions across slope aspects:as derived from landscape position[J]. Plant Ecology, 2008, 198:297-308.[48] Wang Hongwei, Huang Chunlin, Hao Xiaohua, et al. Analyses of the spatiotemporal variations of snow cover in North Xinjiang[J]. Journal of Glaciology and Geocryology, 2014, 36(3):508-516. [王宏伟, 黄春林, 郝晓华, 等. 北疆地区积雪时空变化的影响因素分析[J]. 冰川冻土, 2014, 36(3):508-516.] |