X img

官方微信

img

群号:冰川冻土交流群

QQ群:218834310

高级检索
作者投稿 专家审稿 编辑办公 编委办公 主编办公

冰川冻土 ›› 2015, Vol. 37 ›› Issue (3): 650-657.doi: 10.7522/j.issn.1000-0240.2015.0073

• 冰冻圈与全球变化 • 上一篇    下一篇

基于克里金插值估算区域降水量的抽样方法对比分析——以甘肃省为例

刘世伟1,4, 吴锦奎1,2, 张文春3, 周嘉欣2, 杨俊华1   

  1. 1. 中国科学院 寒区旱区环境与工程研究所 冰冻圈科学国家重点实验室, 甘肃 兰州 730000;
    2. 中国科学院 寒区旱区环境与工程研究所 流域水文及应用生态实验室, 甘肃 兰州 730000;
    3. 甘肃省酒泉水文水资源管理局, 甘肃 嘉峪关 735200;
    4. 中国科学院大学, 北京 100049
  • 收稿日期:2015-01-10 修回日期:2015-05-17 出版日期:2015-06-25 发布日期:2015-09-29
  • 通讯作者: 吴锦奎, E-mail: jkwu@lzb.ac.cn. E-mail:jkwu@lzb.ac.cn
  • 作者简介:刘世伟(1990-), 男, 湖南岳阳人, 2013年毕业于湖南工业大学, 现为中国科学院寒区旱区环境与工程研究所在读硕士研究生, 主要从事寒旱区水文研究工作. E-mail: liushiwei1990@lzb.ac.cn
  • 基金资助:
    国家重大科学研究计划项目(2013CBA01806);国家自然科学基金项目(41130638;41271085);冰冻圈国家重点实验室开放基金项目(SKLCS-OP-2013-05)资助

Comparison analysis of sampling methods to estimate the regional precipitation based on Kriging interpolation method: a case study in Gansu Province

LIU Shiwei1,4, WU Jinkui1,2, ZHANG Wenchun3, ZHOU Jiaxin2, YANG Junhua1   

  1. 1. State Key Laboratory of Cryospheric Sciences, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China;
    2. Laboratory of Watershed Hydrology and Ecology, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China;
    3. Jiuquan Hydrology and Water Resources Survey Bureau of Gansu Province, Jiayuguan 735200, Gansu, China;
    4. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2015-01-10 Revised:2015-05-17 Online:2015-06-25 Published:2015-09-29

摘要: 降水数据的空间插值精度由降水的空间变异特征、插值方法和降水观测站分布决定的, 其中, 降水观测站及插值方法的选择尤为重要. 利用空间随机抽样、空间分层抽样和空间三明治抽样等空间抽样方案, 以甘肃省境内的气象站点为研究对象进行抽样分析, 在抽样结果的基础上进行区域降水量克里金插值, 并对比了插值结果精确度. 结果表明: 在较为丰富的先验知识的前提下, 空间三明治抽样所得的区域降水量插值结果的误差项ME(1.97)、MSE(0.0066)和RMSSE(1.0184)都是最优的, 空间分层抽样次之, 空间随机抽样最差. 与另外两种抽样方案相比, 空间三明治抽样是一种使区域误差最小, 适用范围更广, 精确度更高的抽样方法.

关键词: 克里金插值, 空间抽样, 三明治抽样, 降水量, 甘肃

Abstract: The accuracy of spatial interpolation of precipitation data is determined by the spatial variability of precipitation, the interpolation method and the distribution of observatories whose selections are particularly important. In this paper, the spatial sampling programs including space random sampling, space stratified sampling and space sandwich sampling were used to analyze the meteorological stations of Gansu Province, and the accuracy of Kriging interpolation method conducted on the basis of the sampling results were compared. It is found that the errors of regional precipitation interpolation based on space sandwich sampling including ME(1.97), MSE (0.0066) and RMSSE (1.0184)are minimum under the premise of abundant prior knowledge. The result of space stratified sampling is poor, and that of space random sampling is the worst. Space sandwich sampling is the best sampling method which minimizes the regional error, and has a wider scope of application with a higher degree of accuracy as compared with the other two.

Key words: Kriging interpolation, spatial sampling, sandwich sampling, precipitation, Gansu Province

中图分类号: 

  • P426.61+3