[1] Perfect E, Mclaughlin N B, Kay B D, et al. An improved fractal equation for the soil water retention curve[J]. Water Resources Research, 1996, 32(2): 281-287. [2] Liu Jilong, Ma Xiaoyi, Zhang Zhenhua. Spatial variability of soil water retention curve in different soil layers and its affecting factors[J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(1): 46-52. [刘继龙, 马孝义, 张振华. 不同土层土壤水分特征曲线的空间变异及其影响因素[J]. 农业机械学报, 2010, 41(1): 46-52.] [3] Men Mingxin, Zhao Tongke, Peng Zhengping, et al. Study on the soil erodibility based on the soil particle-size distribution in Hebei Province[J]. Scientia Agricultura Sinica, 2004, 37(11): 1647-1653. [门明新, 赵同科, 彭正萍, 等. 基于土壤粒径分布模型的河北省土壤可蚀性研究[J]. 中国农业科学, 2004, 37(11): 1647-1653.] [4] Ran Youhua, Li Xin, Cheng Guodong, et al. Distribution of permafrost in China: an overview of existing permafrost maps[J]. Permafrost and Periglacial Processes, 2012, 23(4): 322-333. [5] Yang Jianping, Yang Suiqiao, Li Man, et al. Vulnerability of frozen ground to climate change in China[J]. Journal of Glaciology and Geocryology, 2013, 35(6): 1436-1445. [杨建平, 杨岁桥, 李曼, 等. 中国冻土对气候变化的脆弱性[J]. 冰川冻土, 2013, 35(6): 1436-1445.] [6] Jin Huijun, Lü Lanzhi, He Ruixia, et al. A new aridity-based classification of permafrost zones on the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2014, 36(5): 1049-1057. [金会军, 吕兰芝, 何瑞霞, 等. 基于气候干燥度的青藏高原多年冻土区分类新方案[J]. 冰川冻土, 2014, 36(5): 1049-1057.] [7] Yang Zhaoping, Ouyang Hua, Xu Xingliang, et al. Spatial heterogeneity of soil moisture and vegetation coverage of alpine grassland in permafrost area of the Qinghai-Tibet Plateau[J]. Journal of Natural Resources, 2010, 25(3): 426-434. [杨兆平, 欧阳华, 徐兴良, 等. 五道梁高寒草原土壤水分和植被盖度空间异质性的地统计分析[J]. 自然资源学报, 2010, 25(3): 426-434.] [8] Gao Zeyong, Wang Yibo, Wen Jing, et al. The Influence of thermokarst lake formation on soil desertification process in permafrost regions of the source region of the Yangtze River[J]. Journal of Desert Research, 2014, 34(3): 758-764. [高泽永, 王一博, 文晶, 等. 长江源多年冻土区热融湖塘的形成对土壤沙化过程的影响[J]. 中国沙漠, 2014, 34(3): 758-764.] [9] Wang Yibo, Gao Zeyong, Wen Jing, et al. Effect of a thermokarst lake on soil physical properties and infiltration processes in the permafrost region of the Qinghai-Tibet Plateau, China[J]. Science in China (Series D: Earth Sciences), 2014, 57(10): 2357-2365. [王一博, 高泽永, 文晶, 等. 青藏高原多年冻土区热融湖塘对土壤物理特性及入渗过程的影响[J]. 中国科学(D辑: 地球科学), 2014, 44(10): 2285-2293.] [10] Wu Qingbai, Shen Yongping, Shi Bin. Relationship between frozen soil together with its water-heat process and ecological environment in the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2003, 25(3): 250-255. [吴青柏, 沈永平, 施斌. 青藏高原冻土及水热过程与寒区生态环境的关系[J]. 冰川冻土, 2003, 25(3): 250-255.] [11] Luo Yayong, Meng Qingtao, Zhang Jinghui, et al. Species diversity and biomass in relation to soil properties of alpine meadows in the eastern Tibet Plateau in different degradation stages[J]. Journal of Glaciology and Geocryoloogy, 2014, 36(5): 1298-1305. [罗亚勇, 孟庆涛, 张静辉, 等. 青藏高原东缘高寒草甸退化过程中植物群落物种多样性、 生产力与土壤特性的关系[J]. 冰川冻土, 2014, 36(5): 1298-1305.] [12] Hu Guangyin, Jin Huijun, Dong Zhibao, et al. Research of land-use and land-cover change (LUCC) in the source regions of the Yellow River[J]. Journal of Glaciology and Geocryology, 2014, 36(3): 573-581. [胡光印, 金会军, 董治宝, 等. 黄河源区土地利用/覆盖变化(LUCC)研究[J]. 冰川冻土, 2014, 36(3): 573-581.] [13] Lin Lin, Jin Huijun, Luo Dongliang, et al. Preliminary study on major features of alpine vegetation in the Source Area of the Yellow River (SAYR)[J]. Journal of Glaciology and Geocryology, 2014, 36(1): 230-236. [林琳, 金会军, 罗栋梁, 等. 黄河源区高寒植被主要特征初探[J]. 冰川冻土, 2014, 36(1): 230-236.] [14] Wen Jing, Wang Yibo, Gao Zeyong, et al. Soil hydrological characteristics of the degrading meadow in permafrost regions in the Beilube River basin[J]. Journal of Glaciology and Geocryology, 2013, 35(4): 929-937. [文晶, 王一博, 高泽永, 等. 北麓河流域多年冻土区退化草甸的土壤水文特征分析[J]. 冰川冻土, 2013, 35(4): 929-937.] [15] Tyler S W, Wheatcraft S W. Fractal scaling of soil particle-size distributions: analysis and limitations[J]. Soil Science Society of America Journal, 1992, 56(2): 362-369. [16] Wang Guoliang, Zhou Shenglu, Zhao Qiguo. Volume fractal dimension of soil particles and its applications to land use[J]. Acta Pedologica Sinica, 2005, 42(4): 545-550. [王国梁, 周生路, 赵其国. 土壤颗粒的体积分形维数及其在土地利用中的应用[J]. 土壤学报, 2005, 42(4): 545-550.] [17] Yang Huiling, Gao Peng, Wang Huawei, et al. Characteristics of soil particles fractal dimension under different forest stands of the ecological restoration area in Dahei Mountain area[J]. Science of Soil and Water Conservation, 2009, 7(5): 52-57. [杨慧玲, 高鹏, 王华伟, 等. 大黑山生态修复区不同植被类型土壤颗粒的分形特征[J]. 中国水土保持科学, 2009, 7(5): 52-57.] [18] Wang De, Fu Bojie, Chen Liding, et al. Fractal analysis on soil particle size distributions under different land-use types: a case study in the loess hilly areas of the Loess Plateau, China[J]. Aacta Ecologica Sinica, 2007, 27(7): 3081-3089. [王德, 傅伯杰, 陈利顶, 等. 不同土地利用类型下土壤粒径分形分析——以黄土丘陵沟壑区为例[J]. 生态学报, 2007, 27(7): 3081-3089.] [19] Sun Mei, Sun Nan, Huang Yunxiang, et al. Multifractal characterization of soil particle size distribution under long-term different fertilizations in upland red soil[J]. Scientia Agricultura Sinica, 2014, 47(11): 2173-2181. [孙梅, 孙楠, 黄运湘, 等. 长期不同施肥红壤粒径分布的多重分形特征[J]. 中国农业科学, 2014, 47(11): 2173-2181.] [20] Su Yongzhong, Zhao Halin. Fractal features of soil particle size distribution in the desertification process of the farm land in Horqin sandy land[J]. Acta Ecologica Sinica, 2004, 24(1): 71-74. [苏永中, 赵哈林. 科尔沁沙地农田沙漠化演变中土壤颗粒分形特征[J]. 生态学报, 2004, 24(1): 71-74.] [21] Zhao Wenzhi, Liu Zhimin, Cheng Guodong. Fractal dimension of soil particle for sand desertification[J]. Acta Pedologica Sinica, 2002, 39(6): 877-881. [赵文智, 刘志民, 程国栋. 土地沙质荒漠化过程的土壤分形特征[J]. 土壤学报, 2002, 39(6): 877-881.] [22] Martí M Á, Montero E. Laser diffraction and multifractal analysis for the characterization of dry soil volume-size distributions[J]. Soil and Tillage Research, 2002, 64(1): 113-123. [23] Guan Xiaoyan, Yang Peiling, Lü Ye. Relationships between soil particle size distribution and soil physical properties based on multifractal[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(3): 44-50. [管孝艳, 杨培岭, 吕烨. 基于多重分形的土壤粒径分布与土壤物理特性关系[J]. 农业机械学报, 2011, 42(3): 44-50.] [24] Li Min, Li Yi. Local fractal and multifractal characteristics of soil number-based particle size distributions[J]. Journal of Northwest A & F University (Natural Science Edition), 2011, 39(11): 216-222. [李敏, 李毅. 土壤颗粒数量分布的局部分形及多重分形特性[J]. 西北农林科技大学学报(自然科学版), 2011, 39(11): 216-222.] [25] Guan Xiaoyan, Yang Peiling, Ren Shumei, et al. Heterogeneity analysis of particle size distribution for loamy soil based on multifractal theory[J]. Journal of Basic Science and Engineering, 2009, 17(2): 196-205. [管孝艳, 杨培岭, 任树梅, 等. 基于多重分形理论的壤土粒径分布非均匀性分析[J]. 应用基础与工程科学学报, 2009, 17(2): 196-205.] [26] Bai Yiru, Wang Youke. Monofractal and multifractal analysis on soil particle distribution in hilly and gully areas of the Loess Plateau[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(5): 43-48. [白一茹, 汪有科. 黄土丘陵区土壤粒径分布单重分形和多重分形特征[J]. 农业机械学报, 2012, 43(5): 43-48.] [27] Wang Jinman, Zhang Meng, Bai Zhongke, et al. Multi-fractal characteristics of reconstructed soil particle in opencast coal mine dump in loess area[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(4): 230-238. [王金满, 张萌, 白中科, 等. 黄土区露天煤矿排土场重构土壤颗粒组成的多重分形特征[J]. 农业工程学报, 2014, 30(4): 230-238.] [28] Dong Lili, Zheng Fenli. Fractal characteristics of soil particle size distributions in gully-hilly regions of the Loess Plateau, North of Shaanxi, China[J]. Soils, 2010, 42(2): 302-308. [董莉丽, 郑粉莉. 陕北黄土丘陵沟壑区土壤粒径分布分形特征[J]. 土壤, 2010, 42(2): 302-308.] [29] Liu Minghao, Sun Zhizhong, Niu Fujun, et al. Variation characteristics of the permafrost along the Qinghai-Tibet Railway under the background of climate change[J]. Journal of Glaciology and Geocryology, 2014, 36(5): 1122-1130. [刘明浩, 孙志忠, 牛富俊, 等. 气候变化背景下青藏铁路沿线多年冻土变化特征研究[J]. 冰川冻土, 2014, 36(5): 1122-1130.] [30] Gao Zeyong, Wang Yibo, Liu Guohua. Effect of thermokarst lake on soil saturated hydraulic conductivity and analysis of its influenced factors[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(20): 109-117. [高泽永, 王一博, 刘国华. 热融湖塘对青藏高原土壤饱和导水率的影响及因素分析[J]. 农业工程学报, 2014, 30(20): 109-117.] [31] Ma Yushou. Studies on formation mechanism of “black soil type” degraded grassland restoring pattern in the source region of Yangtze, Yellow and Lantsang Rivers[D]. Lanzhou: Gansu Agricultural University, 2006. [马玉寿. 三江源区“黑土型”退化草地形成机理与恢复模式研究[D]. 兰州: 甘肃农业大学, 2006.] [32] Zhou Weixing, Wu Tao, Yu Zunhong. Geometrical characteristics of singularity spectra of multifractal II. partitiong function definition[J]. Journal of East China University of Science and Technology, 2000, 26(4): 390-395. [周炜星, 吴韬, 于遵宏. 多重分形奇异谱的几何特性II.配分函数法[J]. 华东理工大学学报, 2000, 26(4): 390-395.] [33] Peitgen H O, Jürgens H, Saupe D. Chaos and fractals: new frontiers of science[M]. New York: Springer Science & Business Media, 2006. [34] Zhao Shiwei, Zhao Yonggang, Wu Jinshui. Quantitative analysis of soil pores under natural vegetation successions on the Loess Plateau[J]. Science in China (Series D: Earth Sciences), 2010, 2010, 53(4): 617-625. [赵世伟, 赵勇钢, 吴金水. 黄土高原植被演替下土壤孔隙的定量分析[J]. 中国科学(D辑: 地球科学), 2010, 40(2): 223-231.] [35] Gao Chao. Study on the characteristics of soil organic matter of alpine meadow under different degradation degrees in eastern Qilian Mountains and its effect on productivity[D]. Lanzhou: Gansu Agricultural University, 2007. [高超. 东祁连山不同退化程度高寒草甸草原土壤有机质特性及其对草地生产力的影响[D]. 兰州: 甘肃农业大学, 2007.] [36] Liu Yuhong, Li Xilai, Li Changhui, et al. Vegetation decline and reduction of soil organic carbon stock in high-altitude meadow grasslands in the source area of Three Major Rivers of China[J]. Journal of Agro-Environment Science, 2009, 28(12): 2559-2567. [刘育红, 李希来, 李长慧, 等. 三江源区高寒草甸湿地植被退化与土壤有机碳损失[J]. 农业环境科学学报, 2009, 28(12): 2559-2567.] [37] Li Zuezhuan, Fan Guisheng. Influence of organic matter content on infiltration capacity and parameter in field soils[J]. Journal of Taiyuan University of Technology, 2006, 37(1): 59-62. [李雪转, 樊贵盛. 土壤有机质含量对土壤入渗能力影响的试验研究[J]. 太原理工大学学报, 2006, 37(1): 59-62.] [38] Yang Yi, Li Xuemei, Jiang Tao, et al. Distribution characteristics of labile organic matter in different-sized aggregates of soils in Chongqing[J]. Environment and Ecology in the Three Gorges, 2011, 33(2): 1-5. [杨益, 李雪梅, 江韬, 等. 活性有机质在不同粒径土壤团聚体中的分布特征[J]. 三峡环境与生态, 2011, 33(2): 1-5.] [39] Wang Genxu, Li Yuanshou, Wu Qingbai, et al. Impacts of permafrost changes on alpine ecosystem in Qinghai-Tibet Plateau[J]. Science in China (Series D: Earth Sciences), 2006. 49(11): 1156-1169. [王根绪, 李元寿, 吴青柏, 等. 2006. 青藏高原冻土区冻土与植被的关系及其对高寒生态系统的影响[J]. 中国科学(D辑: 地球科学), 2006. 36(8): 743-754.] [40] Wang Yibo, Wang Genxu, Wu Qingbai, et al. The impact of Vegetation degeneration on hydrology features of alpine soil[J]. Journal of Glaciology and Geocryology, 2010, 32(5): 989-998. [王一博, 王根绪, 吴青柏, 等. 植被退化对高寒土壤水文特征的影响[J]. 冰川冻土, 2010, 32(5): 989-998.] [41] Shan Xiuzhi, Wei Youqing, Yan Huijun, et al. Influence of organic matter content on soil hydrodynanmic parameters[J]. Acta Pedologica Sinica, 1998, 35(1): 1-9. [单秀枝, 魏由庆, 严慧峻, 等. 土壤有机质含量对土壤水动力学参数的影响[J]. 土壤学报, 1998, 35(1): 1-9.] |