[1] Aïtcin P C. Cements of yesterday and today: concrete of tomorrow[J]. Cement and Concrete research, 2000, 30(9): 1349-1359. [2] Clifton J R, NausD J, Amey S L, et al. Service-life prediction-state-of-the-art report[R]. Farmington Hills, MI, USA: American Concrete Institute, 2000. [3] Yang Xinlei. Research on the performance and its application of pumice and pumice-concrete[D]. Tianjin: Hebei University of Technology, 2004. [杨新磊. 浮石及其混凝土的性能与应用研究[D]. 天津: 河北工业大学, 2004.] [4] Cao Gang. Experimental study of high strength lightweight aggregate concrete[D]. Xi'an: Northwestern Polytechnical University, 2004. [曹刚. 高强轻骨料混凝土试验研究[D]. 西安: 西北工业大学, 2004.] [5] Holm T A, Bremner T W. State-of-the-art report on high-strength, high-durability structural low-density concrete for applications in severe marine environments[M]. Washington, D.C.: US Army Corps of Engineers, 2000. [6] Huo Junfang. Status quo and development of research on lightweight aggregate concrete[J]. Construction Technology, 2009, 40(4): 363-365. [霍俊芳. 轻骨料混凝土的研究现状与发展[J]. 建筑技术, 2009, 40(4): 363-365.] [7] Chu Jianjun. Experimental study on frost resistance properties of pumice mixed aggregate concrete[D]. Hohhot: Inner Mongolia University of Technology, 2011. [储建军. 浮石混合骨料混凝土抗冻性能试验研究[D]. 呼和浩特: 内蒙古工业大学, 2011.] [8] Wang Hailong. The study on early mechanics and frost resistance of lightweight aggregate concrete[D]. Hohhot: Inner Mongolia Agricultural University, 2009. [王海龙. 轻骨料混凝土早期力学性能与抗冻性能的试验研究[D]. 呼和浩特: 内蒙古农业大学, 2009.] [9] Dong Wei, Shen Xiangdong. Experimental study on cement mo-rtar fluidity and compressive strength by different aeolian sand dosage[J]. Bulletin of the Chinese Ceramic Society, 2013, 32(9): 1900-1904. [董伟, 申向东. 不同风积沙掺量对水泥砂浆流动度和强度的研究[J]. 硅酸盐通报, 2013, 32(9): 1900-1904.] [10] Dong Wei, Shen Xiangdong, Lin Yanjie, et al. The impact of mixed aeolian sand on the properties of pumice lightweight aggregate concrete[J]. Bulletin of the Chinese Ceramic Society, 2015, 34(8): 2089-2094. [董伟, 申向东, 林艳杰, 等. 风积沙的掺入对浮石轻骨料混凝土性能的影响[J]. 硅酸盐通报, 2015, 34(8): 2089-2094.] [11] Liu Zhiyong, Ma Liguo. Durability and service life prediction model for freezing and thawing cycle of high strength concrete[J]. Industrial Construction, 2005, 35(1): 11-14. [刘志勇, 马立国. 高强混凝土的抗冻性与寿命预测模型[J]. 工业建筑, 2005, 35(1): 11-14.] [12] Fu Yawei, Cai Liangcai, Wu Yonggen. Freeze-thaw cycle test and damage mechanics models of alkali-activated slag concrete[J]. Construction and Building Materials, 2011, 25(7): 3144-3148. [13] Yu Hongfa, Sun Wei, Zhang Yunsheng, et al. Service life prediction method of concrete subjected to freeze-thaw cycles and/or chemical attack I: damage development equation and degradation mode[J]. Journal of the Chinese Ceramic Society, 2008, 36(S1): 128-135. [余红发, 孙伟, 张云升, 等. 在冻融或腐蚀环境下混凝土使用寿命预测方法I: 损伤演化方程与损伤失效模式[J]. 硅酸盐学报, 2008, 36(S1): 128-135.] [14] Yu Hongfa, Sun Wei, Jin Zuquan, et al. Damage evolution equation for service life predicting of concrete structures in key civil engineering[J]. Journal of Southeast University (Natural Science Edition), 2006, 36(S2): 216-220. [余红发, 孙伟, 金祖权, 等. 土木工程结构混凝土寿命预测的损伤演化方程[J]. 东南大学学报(自然科学版), 2006, 36(S2): 216-220.] [15] Yao Wu. Property of fiber reinforced concrete at low temperature and its damage mechanism under freezing-thawing cycles[J]. Journal of Glaciology and Geocryology, 2005, 27(4): 545-549. [姚武. 纤维混凝土的低温性能和冻融损伤机理研究[J]. 冰川冻土, 2005, 27(4): 545-549.] [16] Chen Aijiu, Zhang Qing, Wang Jing, et al. Freeze-thaw cycle test and damage mechanics model for recycled concrete[J]. Engineering Mechanics, 2009, 26(11): 102-107. [陈爱玖, 章青, 王静, 等. 再生混凝土冻融循环试验与损伤模型研究[J]. 工程力学, 2009, 26(11): 102-107.] [17] Gao Chu, Shen Xiangdong, Wang Xiaoxiao, et al. Freeze-thaw resistance of lightweight aggregate concrete with stress damage[J]. Journal of the Chinese Ceramic Society, 2014, 42(10): 1247-1252. [高矗, 申向东, 王萧萧, 等. 应力损伤轻骨料混凝土抗冻融性能[J]. 硅酸盐学报, 2014, 42(10): 1247-1252.] [18] Xiao Qianhui, Niu Ditao. Damage analysis of concrete subjected to both freezing-thawing cycles and acid rain attack[J]. Journal of Glaciology and Geocryology, 2014, 36(6): 1484-1489. [肖前慧, 牛荻涛. 冻融与酸雨侵蚀共同作用下混凝土损伤分析[J]. 冰川冻土, 2014, 36(6): 1484-1489.] [19] Du Peng. Freeze-thaw damage model and service life prediction of concrete under multi-factor coupling[D]. Beijing: China Building Materials Academy, 2014. [杜鹏. 多因素耦合作用下混凝土的冻融损伤模型与寿命预测[D]. 北京: 中国建筑材料科学研究总院, 2014.] [20] Li Jinyu, Deng Zhenggang, Cao Jianguo, et al. Quantitative design on the frost-resistance of concrete[J]. Concrete, 2000, 12(9): 61-65. [李金玉, 邓正刚, 曹建国, 等. 混凝土抗冻性的定量化设计[J]. 混凝土, 2000, 12(9): 61-65.] [21] Vesikari E. Service life design of concrete structures with regard to the frost resistance of concrete[J]. Nordic Concrete Research, 1986(5): 215-228. [22] Ma Haijian. Zonation and frost resistance parameter design for durability of airport pavement concrete in cold region[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015. [麻海舰. 寒区机场道面混凝土耐久性区划及抗冻性参数设计[D]. 南京: 南京航空航天大学, 2015.] |