img

官方微信

img

群号:冰川冻土交流群

QQ群:218834310

高级检索

冰川冻土 ›› 2016, Vol. 38 ›› Issue (1): 140-144.doi: 10.7522/j.issn.1000-0240.2016.0016

• 寒区科学与技术 • 上一篇    下一篇

深部高承压水地层裂隙岩体冻结温度场实测研究

李栋伟1,2, 周艳3, 靳鹏伟4, 李阳3, 张瀚3   

  1. 1. 中国科学院 寒区旱区与环境工程研究所 冻土工程国家重点实验室, 甘肃 兰州 730000;
    2. 福建工程学院 土木工程学院, 福建 福州 350108;
    3. 安徽理工大学 土木建筑工程学院, 安徽 淮南 232001;
    4. 湖南科技学院 土木与环境工程学院, 湖南 永州 425199
  • 收稿日期:2015-11-06 修回日期:2016-01-18 出版日期:2016-02-25 发布日期:2016-05-30
  • 通讯作者: 靳鹏伟,E-mail:jpw960@163.com. E-mail:jpw960@163.com
  • 作者简介:李栋伟(1978-),男,湖南邵阳人,教授,2011年在安徽理工大学获博士学位,主要从事冻土工程和隧道工程等方面的教学和科研工作.E-mail:dwli2005@163.com
  • 基金资助:
    国家自然科学基金(41271071);国家重点基础研究计划973项目(2012CB026102);冻土工程国家重点实验室项目(SKLFSE201204);福建工程学院科研启动基金;湖南省教育厅重点项目(15A074)资助

Monitoring and studying the freezing temperature field in deep fractured rock mass with high confined water

LI Dongwei1,2, ZHOU Yan3, JIN Pengwei4, LI Yang3, ZHANG Han3   

  1. 1. State Key Laboratory of Frozen Soil Engineering, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China;
    2. College of Civil Engineering, Fujian University of Technology, Fuzhou 350108;
    3. College of Civil Engineering and Architecture; Anhui University of Science and Technology, Huainan 232001, Anhui, China;
    4. College of Civil and Environmental Engineering, Hunan University of Science and Engineering, Yongzhou 425199, Hunan, China
  • Received:2015-11-06 Revised:2016-01-18 Online:2016-02-25 Published:2016-05-30

摘要: 通过深部高承压水地层冻结法凿井现场实测,获得矿井裂隙岩体各个层位测温孔的温度和盐水去回路干管温度变化规律.结果表明:测温孔实测温度在冻结初期呈线性下降规律;当温度继续降低到岩石的结冰温度以后,降温速率逐步增加;当冻结帷幕达到设计温度时,实测温度变化趋于平缓;外圈管外侧测温孔降温速率最慢,两圈管之间位置的测温孔降温速率最快;位于不同位置不同层位的测温孔降温速率不一致,其中位于92m深度的卵石层(C1#测温孔)降温速率为0.54℃·d-1,位于209m深度的砂质泥岩(C3#测温孔)降温速率为0.9℃·d-1;根据实测温度可以预测地层形成冻结帷幕的交圈时间、厚度、平均温度等冻结设计参数.深部裂隙岩体冻结温度实测资料对指导冻结帷幕设计与施工具有重要实践意义.

关键词: 裂隙岩体, 冻结法凿井, 测温孔, 冻结温度场, 高承压水地层

Abstract: Through the in-situ measurement of the mine sunken by freeze sinking in deep high-pressure water stratum, the temperatures of fractured rock mass monitored by thermometers allocated in various horizons and the variation of looping brine temperature were obtained. In the initial, temperatures in the monitoring holes dropped almost linearly. When temperature continuously decreased to the freezing temperature of the rock, the cooling rate gradually increased. When the frozen wall reached the design temperature, the monitored temperature changed gently. Cooling rate of the outside of the outer ring changed most slowly, and that between the two rings changed most fast. Cooling rate at different horizons and in different locations were inconformity, for example, cooling rate was 0.9 ℃·d-1 at the temperature monitoring hole C3# of sandy mudstone at 209 m deep and cooling rate was 0.54 ℃·d-1 at the temperature monitoring hole C1# of pebble bed at 92 m deep. Therefore, the design parameters such as the circle shift time, thickness and average temperature when frozen wall composed can be inferred from the monitored temperature. The monitored data have significant practical significance for guiding the design and construction of freeze sinking in deep fractured rock mass.

Key words: fractured rock mass, freeze sinking, temperature monitoring hole, freezing temperature field, high confined groundwater stratum

中图分类号: 

  • TD265.3+1