[1] Zhao Jun, Huang Yongsheng, Song Geqing, et al. Application of snowmelt runoff model in upper stream of Shule river basin[J]. Journal of Water Resources & Water Engineering, 2015, 26(1):72-80.[赵军, 黄永生, 宋阁庆, 等. SRM融雪径流模型在疏勒河流域上游的应用[J]. 水资源与水工程学报, 2015, 26(1):72-80]. [2] Xia Ziqiang, Guo Wenxian. Research advance in river health[J]. Resources and Environment in the Yangtze Basin, 2008, 17(2):252-256.[夏自强, 郭文献. 河流健康研究进展与前瞻[J]. 长江流域资源与环境, 2008, 17(2):252-256]. [3] Shen Yongping, Su Hongchao, Wang Guoya, et al. The responses of glaciers and snow cover to climate change in Xinjiang (I):Hydrological effect[J]. Journal of Glaciology and Geocryology, 2013, 35(3):513-527.[沈永平, 苏宏超, 王国亚, 等. 新疆冰川、积雪对气候变化的响应(I):水文效应[J]. 冰川冻土, 2013, 35(3):513-527]. [4] ShenYongping, Su Hongchao, Wang Guoya, et al. Hydrological processes responding to climate warming in the upper reaches of Kelan River Basin with snow-dominated of the Altay Mountains region, Xinjiang, China[J]. Journal of Glaciology and Geocryology, 2007, 29(6):845-854.[沈永平, 王国亚, 苏宏超, 等. 新疆阿尔泰山区克兰河上游水文过程对气候变暖的响应[J]. 冰川冻土, 2007, 29(6):845-854]. [5] Li Min, Liu Zhihui, Fang Shifeng. Study of snow water equivalent monitoring model based on MODIS data[J]. Research of Soil and Water Conservation, 2007, 14(4):74-81.[李民, 刘志辉, 房世峰. 基于MODIS数据的雪水当量监测模型研究[J]. 水土保持研究, 2007, 14(4):74-81]. [6] Liu Yu, Jiang Lingmei, Shi Jiancheng, et al. Validation and sensitivity analysis of the snow thermal model(SNTHERM)at Binggou basin, Gansu[J]. Journal of Remote Sensing, 2011, 15(4):792-810.[刘誉, 蒋玲梅, 施建成, 张立新, 张生雷, 潘金梅, 王培. 雪热力模型(SNTHERM)在冰沟流域的模拟和敏感性试验[J]. 遥感学报, 2011, 15(4):792-810] [7] Hu Liequn, Huang Weijun, Yin Keqin, et al. Estimation of snow water resources and its distribution in Xinjiang[J]. Advances in Water Science, 2013, 24(3):326-332.[胡列群, 黄慰军, 殷克勤, 等. 新疆冬季雪水资源估算及分布特征[J]. 水科学进展, 2013, 24(3):326-332]. [8] Lu Heng, Wei Wenshou, Liu Mingzhe, et al. The characteristic of energy budget on snow surface beneath Picea Schrenkiana forest in the west Tianshan Mountains of China during snowmelt period[J]. Mountain Research, 2015, 33(2):173-182.[陆恒, 魏文寿, 刘明哲, 等. 融雪期天山西部森林积雪表面能量平衡特征[J]. 山地学报, 2015, 33(2):173-182]. [9] Ablimitjan Ablikim, Chen Chunyan, Yusup Abdula, et al. The temporal and spatial distribution features of snowmelt flood events in Xinjiang from 2001 to 2012[J]. Journal of Glaciology and Geocryology, 2015, 37(1):226-232.[阿不力米提江·阿布力克木, 陈春艳, 玉素甫·阿不都拉, 等. 2001-2012年新疆融雪型洪水时空分布特征[J]. 冰川冻土, 2015, 37(1):226-232]. [10] Essery R, Etchevers P. Parameter sensitivity in simulations of snowmelt[J]. Journal of Geophysical Research:Atmospheres, 2004, 109(D20). [11] Bartelt P, Lehning M. A physical SNOWPACK model for the Swiss avalanche warning:Part I:numerical model[J]. Cold Regions Science and Technology, 2002, 35(3):123-145. [12] Feng Xi, Wang Chuanhai, Li Shujian, et al. Multi-time scale simulations with snow melting models based on energy balance theory[J], Journal of Hohai University(Natural Sciences), 2013, 41(1):26-31.[冯曦, 王船海, 李书建, 等. 基于能量平衡法的融雪模型多时间尺度模拟[J]. 河海大学学报(自然科学版), 2013, 41(1):26-31]. [13] He Qingshan, Liu Zhihui, Wei Zhaocai. The study on snowmelt processes based on energy and water balance theory[J], Journal of Xinjiang University(Natural Science Edition), 2012, 29(2):132-136.[贺青山, 刘志辉, 魏召才. 基于水热平衡的融雪过程研究[J], 新疆大学学报(自然科学版), 2012, 29(2):132-136]. [14] Qin Yan, Liu Zhihui, Qiao Peng. The process of water and heat transfer in snow layer during snowmelt period based on energy balance theory[J]. Desert and Oasis Meteorology, 2010, 4(5):11-15.[秦艳, 刘志辉, 乔鹏. 基于能量平衡的融雪期雪层水热过程研究[J]. 沙漠与绿洲气象, 2010, 4(5):11-15]. [15] Zhang Yong, Liu Shiyin. Progress of the application of degreeday model to study glaciers and snow cover[J]. Journal of Glaciology and Geocryology, 2006, 28(1):101-107.[张勇, 刘时银. 度日模型在冰川与积雪研究中的应用进展[J]. 冰川冻土, 2006, 28(1):101-107]. [16] Jost G, Moore R D, Smith R, et al. Distributed temperatureindex snowmelt modelling for forested catchments[J]. Journal of Hydrology, 2012, 420:87-101. [17] Qing Wenwu, Chen Rensheng, Liu Shiyin, et al. Research and application of two kinds of temperature index model on the Koxkar Glacier[J]. Advances in Earth Science, 2011, 26(4):409-416.[卿文武, 陈仁升, 刘时银, 等. 两类度日模型在天山科其喀尔巴西冰川消融估算中的应用[J]. 地球科学进展, 2011, 26(4):409-416]. [18] Li Hongyi, Wang Jian. The snowmelt runoff model applied in the upper Heihe River Basin[J]. Journal of Glaciology and Geocryology, 2008, 30(5):769-775.[李弘毅, 王建. SRM融雪径流模型在黑河流域上游的模拟研究[J]. 冰川冻土, 2008, 30(5):769-775]. [19] Tobin C, Schaefli B, Nicótina L, et al. Improving the degreeday method for sub-daily melt simulations with physically-based diurnal variations[J]. Advances in Water Resources, 2013, 55:149-164. [20] Jowett A E, Hanna E, Ng F, et al. A new spatially and temporally variable sigma parameter in degree-day melt modelling of the Greenland Ice Sheet 1870-2013[J]. Cryosphere Discussions, 2015, 9(5). [21] Shrestha M, Wang L, Koike T, et al. Inverse simulation of snowmelt runoff and snow cover area using the energy balancebased distributed snowmelt model(WEB-DHM-S)for the correction of basin-scale snowfall[C]//EGU General Assembly Conference Abstracts. 2012, 14:3444. [22] Brown M E, Racoviteanu A E, Tarboton D G, et al. An integrated modeling system for estimating glacier and snow melt driven streamflow from remote sensing and earth system data products in the Himalayas[J]. Journal of Hydrology, 2014, 519:1859-1869. [23] Lei Yu, Long Aihua, Deng Mingjiang, et al. Analyses of climate change and its impact on water resources in the middle reaches of Irtysh river during 1926-2009[J], Journal of Glaciology and Geocryology, 2012, 32(4):912-919.[雷雨, 龙爱华, 邓铭江, 等. 1926-2009年额尔齐斯河流域中游地区气候变化及其对水资源的影响分析[J]. 冰川冻土, 2012, 32(4):912-919]. [24] Zhao Jing, Zhao Wei, Guo Chunhong, et al. The sustainable development of water resources and ecological environment construction in the Irtysh River Basin[J]. Journal of Xinjiang Agricultural University, 2004, 27(spl):107-110.[赵晶, 赵伟, 郭春红, 等. 额尔齐斯河流域水资源的可持续开发利用与生态环境建设[J]. 新疆农业大学学报, 2004, 27(增刊):107-110]. [25] Wang Yong. The relationship between snow and runoff in the Irtysh River Basin[J]. Xinjiang Meteorology, 1989, (7):15-19.[王勇. 额尔齐斯河流域积雪与径流的关系[J]. 新疆气象, 1989, (7):15-19]. [26] Yang Fucheng, Xia Ziqiang, Huang Feng, et al. Runoff change characteristics of Omsk station in middle peaches of Irtysh river[J]. Water Resources and Power, 2012, 30(5):9-12.[杨富程, 夏自强, 黄峰, 等. 额尔齐斯河中游鄂木斯克站径流变化特征研究[J]. 水电能源科学, 2012, 30(5):9-12]. [27] Zhuang Xiaocui, Guo Cheng, Zhao Zhengbo, et al. Snow cover variation analysis in Altay area of Xinjiang[J]. Journal of Arid Meteorology, 2010, 28(2):190-197.[庄晓翠, 郭城, 赵正波, 等. 新疆阿勒泰地区积雪变化分析[J]. 干旱气象, 2010, 28(2):190-197]. [28] Zhang Wei, ShenYongping, He Jianqiao, et al. Snow properties on different underlying surfaces during snow-melting period in the Altay Mountains:Observation and analysis[J]. Journal of Glaciology and Geocryology, 2014, 36(3):491-499.[张伟, 沈永平, 贺建桥, 等. 阿尔泰山融雪期不同下垫面积雪特性观测与分析研究[J]. 冰川冻土, 2014, 36(3):491-499]. [29] Zhang Wei, ShenYongping, He Jianqiao, et al. Assessment of efforts of forest on snow ablation in the headwaters of Irtysh River, Xinjiang[J]. Journal of Glaciology and Geocryology, 2014, 36(5):1260-1270.[张伟, 沈永平, 贺建桥, 等. 额尔齐斯河源区森林对春季融雪过程的影响评估[J]. 冰川冻土, 2014, 36(5):1260-1270]. [30] Wu Xuejiao, Wang Ninglian, ShenYongping, et al. In-situ observations and modeling of spring snowmelt processes in an Altay Mountains river basin[J]. Journal of Applied Remote Sensing, 2014, 8(1):084697-084697. [31] Lapo K E, Hinkelman L M, Raleigh M S, et al. Impact of errors in the downwelling irradiances on simulations of snow water equivalent, snow surface temperature, and the snow energy balance[J]. Water Resources Research, 2015, 51(3):1649-1670. [32] Boudhar A, Boulet G, Hanich L, et al. Energy fluxes and melt rate of a seasonal snow cover in the Moroccan High Atlas[J]. Hydrological Sciences Journal, 2014. [33] Smith C D. Correcting the wind bias in snowfall measurements made with a Geonor T-200B precipitation gauge and alter wind shield[C]//87th American Meteorological Society Annual Meeting, San Antonio, TX. 2007. [34] Chen Ajiao. Improving Experiments of Snow Albedo Parameterization Scheme in Land Surface Model BCC_AVIM[D]. Beijing:Chinese Academy of Meteorological Sciences, 2014[陈阿娇. 陆面模式BCC_AVIM中积雪反照率参数化方案的改进试验[D]. 北京:中国气象科学研究院, 2014]. [35] Molotch N P. Reconstructing snow water equivalent in the Rio Grande headwaters using remotely sensed snow cover data and a spatially distributed snowmelt model[J]. Hydrological Processes, 2009, 23(7):1076-1089. [36] Essery R, Etchevers P. Parameter sensitivity in simulations of snowmelt[J]. Journal of Geophysical Research:Atmospheres, 2004, 109(D20). [37] Essery R, Morin S, Lejeune Y, et al. A comparison of 1701 snow models using observations from an alpine site[J]. Advances in Water Resources, 2013, 55:131-148. [38] Raleigh M S, Landry C C, Hayashi M, et al. Approximating snow surface temperature from standard temperature and humidity data:New possibilities for snow model and remote sensing evaluation[J]. Water Resources Research, 2013, 49(12):8053-8069. [39] Boons Sarah. Snow ablation energy balance in a dead forest stand[J]. Hydrological processes, 2009, 23:2600-2610. [40] Lu Heng, Wei Wenshou, Liu Mingzhe, et al. Energy budget over seasonal snow surface at an open site and beneath forest canopy openness during the snowmelt period in western Tianshan Mountains, China[J]. Journal of Mountain Science, 2015, 12(2):298-312. [41] Daniel M R. On the use of bulk aerodynamic formula over melting snow[J]. Nordic Hydrology, 1983, 14(4):93-206. [42] Wang Guoya, Mao Weiyi, He Bin, et al. Changes in snow covers during 1961-2011 and its effects on frozen ground in Altay region, Xinjiang[J]. Journal of Glaciology and Geocryology, 2012, 34(6):1293-1300. 王国亚, 毛炜峄, 贺斌, 等. 新疆阿勒泰地区积雪变化特征及其对冻土的影响[J]. 冰川冻土, 2012, 34(6):1293-1300. [43] Zeng Yun, Wei Lin. Runoff and sediment simulation in purple hilly area based on SWAT Model[J]. Journal of Geo-Information Science, 2013, 15(3):401-407.[曾赟, 魏琳. 川中紫色丘陵区径流泥沙SWAT模型的模拟应用分析[J]. 地球信息科学学报, 2013, 15(3):401-407]. [44] Maruyama T, Takimoto H, Ogura A, et al. Analysis of snowpack accumulation and the melting process of wet snow using a heat balance approach that emphasizes the role of underground heat flux[J]. Journal of Hydrology, 2015, 522:369-381. |