X img





作者投稿 专家审稿 编辑办公 编委办公 主编办公

冰川冻土 ›› 2016, Vol. 38 ›› Issue (2): 341-350.doi: 10.7522/j.issn.1000-0240.2016.0037

• 冰冻圈与全球变化 • 上一篇    下一篇


马启民1, 黄滢冰2, 南卓铜3, 吴小波4   

  1. 1. 西北师范大学 地理与环境科学学院, 甘肃 兰州 730070;
    2. 东莞市地理信息与规划编制研究中心, 广东 东莞 523129;
    3. 南京师范大学地理科学学院, 江苏 南京 210023;
    4. 中国科学院寒区旱区环境与工程研究所, 甘肃 兰州 730000
  • 收稿日期:2015-11-28 修回日期:2016-01-18 出版日期:2016-04-25 发布日期:2016-07-13
  • 通讯作者: 南卓铜,E-mail:nanzt@njnu.edu.cn E-mail:nanzt@njnu.edu.cn
  • 作者简介:马启民(1985-),男,回族,新疆额敏人,2009年毕业于西安文理学院,现为在读硕士研究生,主要从事寒区环境建模与GIS应用研究.E-mail:maqiming@163.com
  • 基金资助:

Simulating one dimensional water-heat processes in a typical permafrost region in the Tibetan Plateau

MA Qimin1, HUANG Yingbing2, NAN Zhuotong3, WU Xiaobo4   

  1. 1. College of Geography and Environment Science, Northwest Normal University, Lanzhou 730070, China;
    2. Dongguan Geographic Information & Urban Planning Research Center, Dongguan 523129, Guangdong, China;
    3. Nanjing Normal University, Nanjing 210023, China;
    4. Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China
  • Received:2015-11-28 Revised:2016-01-18 Online:2016-04-25 Published:2016-07-13

摘要: 了解多年冻土内部的水热过程对寒区工程规划和建设的辅助决策具有重要意义.冻土的水分迁移与温度变化密切相关,然而传统的经验模型局限性大,对水热物理过程考虑不足;陆面过程模型所需的驱动数据多且很难准确模拟深层土温,尽管数值模型在工程上应用的比较多,但很少应用到冻土的演化过程中.基于非饱和土壤渗流和热传导理论,实现了冻土水分场与温度场的水热耦合数值模拟.以唐古拉综合观测场为例,将数值模拟结果与观测数据进行对比,验证水热耦合数值模拟的有效性.结果表明:模型对土壤温度模拟效果较好,15 m以上R2在0.88以上,RMSE在1℃以内;水分模拟尚可,但仍存在一定误差,R2在0.7以上,RMSE在7.65%以内.模拟的活动层厚度约3.6 m,年平均地温所在的深度约为15 m,与实测值基本一致.该水热耦合模型可用于研究多年冻土区土壤水热变化规律.

关键词: 冻土, 数值模型, 土壤温度, 土壤水分, 水热耦合

Abstract: Understanding of water and heat processes of permafrost is crucial for engineering planning and construction in the cold regions. Moisture migration in the frozen soil is closely related to temperature changes. However, traditional empirical models take insufficient account of water-heat physics. Land surface models need a lot of driving data and are difficult to accurately simulate deep soil temperature. Numerical models have been widely applied to engineering in cold regions but rarely to the evolution of the permafrost. This study developed a numerical simulation model coupling the soil moisture and temperature field of permafrost, based on the water flow theory of unsaturated soil and the heat transfer theory. To verify the model, a case study was carried out at the Tanggula site where complete permafrost observations are available. The result shows that the model performs well in soil temperature simulation, 15 m within an R2 above 0.88 and an RMSE less than 1℃. The performance of soil moisture simulation is acceptable, with an R2 above 0.7 and an RMSE less than 7.65%. The estimated active layer thickness is about 3.6 m, and the depth of zero amplitude of soil temperature is approximately 15m and consistent with the measured depth. The developed model is concluded to be applicable to study the changes of soil water flow and heat transport in permafrost underlain areas.

Key words: frozen soil, numerical model, soil temperature, soil moisture, coupled water flow and heat transport


  • P642.14