[1] Rowley D B, Currie B S. Palaeo-altimetry of the late Eocene to Miocene Lunpola basin, central Tibet[J]. Nature, 2006, 439(7077):677-681. [2] Poage M A, Chamberl C P. Empirical relationships between elevation and the stable isotope composition of precipitation and surface waters:Considerations for studies of paleoelevation change[J]. The American Journal of Science, 2001, 301(1):1-15. [3] Rowley D B, Pierrehumbert R T, Currie B S. A new approach to stable isotope-based paleoaltimetry:implications for paleoaltimetry and paleohypsometry of the High Himalaya since the Late Miocene[J]. Earth and Planetary Science Letters, 2001, 188(1/2):253-268. [4] Cyr A J, Currie B S, Rowley D B. Geochemical evaluation of Fenghuoshan Group lacustrine carbonates, North-Central Tibet:Implications for the paleoaltimetry of the Eocene Tibetan Plateau[J]. J Geol, 2005, 113(5):517-533. [5] Decelles P G, Quade J, Kapp P, et al. High and dry in central Tibet during the Late Oligocene[J]. Earth and Planetary Science Letters, 2007, 253(3/4):389-401. [6] Clark I D, Fritz P. Environmental isotopes in hydrogeology[M]. New York:CRC Press, 1997:1-342. [7] Chen Jiansheng, Wang Jiyang, Zhao Xia, et al. Study of groundwater supply of the confined cquifers in the Ejin basin based on isotopic methods[J]. Geological Review, 2004, (6):649-658.[陈建生, 汪集旸, 赵霞, 等. 用同位素方法研究额济纳盆地承压含水层地下水的补给[J]. 地质论评, 2004(6):649-658]. [8] Lechler A R, Niemi N A. The influence of snow sublimation on the isotopic composition of spring and surface waters in the southwestern United States:Implications for stable isotopebased paleoaltimetry and hydrologic studies[J]. Geological Society of America Bulletin, 2012, 124(3-4):318-334. [9] Wen Rong, Tian lide, Wong Yongbiao, et al. The altitide effect of δ18O in precipitation and river water in the Southern Himalayas[J]. Chinese Science Bulletin, 2012, 57(12):1053-1059.[文蓉, 田立德, 翁永标, 等. 喜马拉雅山南坡降水与河水中δ18O高程效应[J]. 科学通报, 2012, 57(12):1053-1059]. [10] Yang Xiaoxin, Xu Baiqing, Yang Wei, et al. The Indian monsoonal influence on altitude effect of δ18O in surface water on southeast Tibetan Plateau[J]. Sci China:Earth Sci, 2012, 42(5):747-754.[杨晓新, 徐柏青, 杨威, 等. 印度季风期对青藏高原东南部地表水体δ18O高程效应的影响[J]. 中国科学:地球科学, 2012, 42(5):747-754]. [11] Ding Lin, Xu Qiang, Zhang Liyuan, et al. Regional variation of river water oxygen isotope and empirical elevation prediction modelsinTibetan Plateau[J]. Quaternary Sciences, 2009, 29(1):1-12. [12] Chen Zhongyu, Wan Li, Nie Zhenlong, et al. Idetification of groundwater recharge in the Heihe basin using environmental isotopes[J]. Hydrogeology & Engineering Geology, 2006, 6(6):9-14.[陈宗宇, 万力, 聂振龙, 等. 利用稳定同位素识别黑河流域地下水的补给来源[J]. 水文地质工程地质, 2006, 6(6):9-14]. [13] Nie Zhenlong, Chen Zhongyu, Shen Jianmei, et al. Environmental isotopes as tracers of hydrological cycle in the recharge area of the Heihe River[J]. Geography and Geo-Information Science, 2005, 21(1):104-108.[聂振龙, 陈宗宇, 申建梅, 等. 应用环境同位素方法研究黑河源区水文循环特征[J]. 地理与地理信息科学, 2005, 21(1):104-108]. [14] Wang Ninglian, Zhang Shibiao, He Jianqiao, et al. Tracing the major source area if the mountainous runoff generation of the Heihe River in northwest Ching using stable isotope technique[J]. Chinese Science Bulletin, 2009, 54(15):2148-2152.[王宁练, 张世彪, 贺建桥, 等. 祁连山中段黑河上游山区地表径流水资源主要形成区域的同位素示踪研究[J].科学通报, 2009, 54(15):2148-2152]. [15] Zhang Yinghua, Wu Yanqing. Characteristics of the δ18O in precipitation in theupper and middle reaches of Heihe River[J]. Journal of Glaciology and Geocryology, 2007, 29(03):440-445.[张应华, 仵彦卿. 黑河流域中上游地区降水δ18O变化特征[J]. 冰川冻土, 2007, 29(03):440-445]. [16] Zhao Liangju, Yin Li, Xiao Honglang, et al. Isotopic evidence for the moisture origin and composition of surface runoff in the headwaters of the Heihe River basin[J]. Chinese Science Bulletin, 2011, 56(01):58-67.[赵良菊, 尹力, 肖洪浪, 等. 黑河源区水汽来源及地表径流组成的稳定同位素证据[J]. 科学通报, 2011, 56(01):58-67]. [17] Wang Ninglian, Zhang Shibiao, Pu Jianchen, et al. Seasonal variation of δ18O in river water in the upper reaches of Heihe River Basin and its influence factors[J]. Journal of Glaciology and Geocryology, 2008, 30(6):914-20.[王宁练, 张世彪, 蒲健辰, 等. 黑河上游河水中δ18O季节变化特征及其影响因素研究[J]. 冰川冻土, 2008, 30(6):914-920]. [18] Zhang Yinghua, Wu Yanqing, et al. Variation of δ18O in water in Heihe River Basin[J]. Advances in Water Science, 2007, 18(06):864-870.[张应华, 仵彦卿. 黑河流域不同水体中δ18O的变化[J]. 水科学进展, 2007, 18(06):864-870]. [19] Cai Houwei. The neoteetonics in the Qilian Montains region[J]. Northwestern Geology, 1984(4):25-28.[蔡厚维. 祁连山的新构造运动[J]. 西北地质, 1984(4):25-28]. [20] Hu Xiaofei, Pan Baotian, Eirc K, et al. Spatial differences in rock uplift rates inferred from channel steepness indices along the northern flank of Qilian Mountain[J]. Chinese Science Bulletin, 2010, 55(23):2329-2338.[胡小飞, 潘保田, EIRC K, 等. 河道陡峭指数所反映的祁连山北翼抬升速率的东西差异[J]. 科学通报, 2010, 55(23):2329-2338]. [21] Yi Xianzhi, Zhang Qiang, Xu Qiyun, et al. Characteristics of climate change in Qilian Mountains region in recent 50 years[J]. Plateau Meteorology, 2009, 28(01):85-90.[尹宪志, 张强, 徐启运, 等. 近50年来祁连山区气候变化特征研究[J]. 高原气象, 2009, 28(01):85-90]. [22] Zhang Liang, Zhang Qiang, Feng Jianying, et al. A study of atmospheric water cycle over the Qilian Mountains(I):Variation of annual water vapor transport[J]. Journal of Glaciology and Geocryology, 2014, 36(05):1079-1091.[张良, 张强, 冯建英, 等. 祁连山地区大气水循环研究(I):空中水汽输送年际变化分析[J]. 冰川冻土, 2014, 36(05):1079-1091]. [23] He Jianqiao, Song Gaoju, Jiang Xi, et al. Relation between glacial meltwater runoff and mountainous runoff in 2006 in four typical river basins of Heihe River water system[J]. Journal of Desert Research, 2008, 28(6):1186-1189.[贺建桥, 宋高举, 蒋熹, 等. 2006年黑河水系典型流域冰川融水径流与出山径流的关系[J]. 中国沙漠, 2008, 28(6):1186-1189]. [24] Wang Weihua, Zou Songbin, Xiao Honglang, et al. Eco-hydrological ontology in inland river basin:construction method and application[J]. Journal of Glaciology and Geocryology, 2014, 36(05):1280-1287.[王蔚华, 邹松兵, 肖红浪, 等. 内陆河流域生态-水文本体的构建方法与应用[J]. 冰川冻土, 2014, 36(05):1280-1287]. [25] Yang Yuan, Yang Jianping, Li Man, et al. Public perception and selections of adaptation measures against glacier change and its impacts:Taking the Hexi inland river basin as an example[J]. Journal of Glaciology and Geocryology, 2015, 37(01):70-79.[杨园, 杨建平, 李曼, 等. 冰川变化及其影响的公众感知与适应措施分析:以河西内陆河流域为例[J]. 冰川冻土, 2015, 37(01):70-79]. [26] Gu Weizu, Pang Zhonghe, Wang Quanjiu, et al. Isotope Hydrology[M]. Beijing:Science Press, 2011.[顾慰祖, 庞忠和, 王全九, 等. 同位素水文学[M]. 北京:科学出版社, 2011]. [27] Yao Tandong, Zhou Xing, Yang Xiaoxin. Indian monsoon influences altitude effect of δ18O in precipitation/river water on the Tibetan Plateau[J]. Chinese Science Bulletin, 2009, 54(15):2124-2130.[姚檀栋, 周行, 杨晓新. 印度季风水汽对青藏高原降水和河水中δ18O垂直递减率的影响[J]. 科学通报, 2009, 54(15):2124-2130]. [28] Zhang Xuewen. Vertical distribution of the transported quantity of material and energy by airflow[J]. Desert and Oasis Meteorology, 2009, 3(02):1-5.[张学文. 气流对物质和能量输送量的垂直分布[J]. 沙漠与绿洲气象, 2009, 3(02):1-5]. [29] Zhou Shiqiao, Nakawom, Sakaia, et al. Water isotope variations in the snow pack and summer precipitation at July 1 Glacier, Qilian Mountains in northwest China[J]. Chinese Science Bulletin, 2007, 52(18):2187-2193.[周石硚, 中尾正义, 坂井亚规子, 等. 祁连山七一冰川积雪和大气降水中的氢氧稳定同位素变化[J]. 科学通报, 2007, 52(18):2187-2193]. [30] Ding Yongjian, Ye Baisheng, Zhou Wenjuan. Temporal and Spatial precipitation distribution in the Heihe catchment, Northwest China, during the past 40 a[J]. Journal of Glaciology and Geocryology, 1999, 21(1):42-48.[丁永健, 叶佰生, 周文娟. 黑河流域过去40 a来降水时空分布特征[J]. 冰川冻土, 1999, 21(1):42-48]. [31] Wang Keli, Jiang Hao, Zhao Hongyan. Atmospheric water vapor transport from westerly and monsoon over the Northwest China[J]. Advances in Water Science, 2005, 16(3):432-438.[王可丽, 江灏, 赵红岩. 西风带与季风对中国西北地区的水汽输送[J]. 水科学进展, 2005, 16(3):432-438]. [32] Yao Tandong, Masson-Delmotte V, Gao Jing, et al. A review of climatic controls on δ18O in precipitation over the Tibetan Plateau:Observations and simulations[J]. Reviews of Geophysics, 2013, 51(4):525-548. [33] Huang L J, Wen X F. Temporal variations of atmospheric water vapor delta D and delta O-18 above an arid artificial oasis cropland in the Heihe River Basin[J]. J Geophys Res-Atmos, 2014, 119(19):11456-11476. |