[1] Friedmann E I. Permafrost as microbial habitat[J]. Viable microorganisms in permafrost,1994:21-26. [2] Omelyansky V L. Bakteriologicheskoe issledovanie Sanga mamonta Prilegayushchei pochvy(Bacteriological investigation of the Sanga mammoth and surrounding soil)[J]. Arkhiv biologicheskikh nauk,1911,16:335-340. [3] Hansen A A,Herbert R A,Mikkelsen K,et al. Viability,diversity and composition of the bacterial community in a high Arctic permafrost soil from Spitsbergen,Northern Norway[J]. Environmental Microbiology,2007,9(11):2870-2884. [4] Vishnivetskaya T A,Petrova M A,Urbance J,et al. Bacterial community in ancient Siberian permafrost as characterized by culture and culture- independent methods[J]. Astrobiology, 2006,6(3):400-414. [5] Ganzert L,Lipsk A,Hubberten H W,et al. The impact of different soil parameters on the community structure of dominant bacteria from nine different soils located on Livingston island, South Shetland Archipelago,Antarctica[J]. Microbiology Ecology, 2011,76(3):476-491. [6] Bai Yu,Yang Daqun,Wang Jianhui,et al. Phylogenetic diversity of culturable bacteria from alpine permafrost in the Tian-shan Mountains,northwestern China[J]. Research in microbiology, 2006,157(8):741-751. [7] Yang Meixue, Nelson F E, Shiklomanov N I, et al. Permafrost degradation and its environmental effects on the Tibetan Plateau: A review of recent research[J]. Earth- Science Reviews, 2010,103(1):31-44. [8] Nan Zhuotong, Li Shuxun, Cheng Guodong. Prediction of permafrost distribution on the Qinghai-Tibet Plateau in the next 50 and 100 years[J]. Science in China(Series D:Earth Sciences), 2005,48(6):797-804. [9] Liu Zhenjing, Li Lubin, Zhuang Caiyun, et al. Analysis of microbial diversity in soil along the Qinghai-Tibet Railway[J]. Research of Environmental Sciences, 2008, 21(6): 176-181. [刘振静,李潞滨,庄彩云,等. 青藏铁路沿线土壤可培养微生物种群多样性分析[J]. 环境科学研究,2008,21 (6):176-181.] [10] Yang Sizhong,Jin Huijun,Wei Zhi,et al. Microbial adaptation to the habitat of permafrost and their response to global change and engineering disturbance in cold regions:Advances and prospects[J]. Journal of Glaciology and Geocryology, 2007,29(2):279-285. [杨思忠,金会军,魏智,等. 微生物对冻土生境的适应以及对全球变化和寒区工程扰动的响应:进展与展望[J]. 冰川冻土,2007,29(2):279-285.] [11] Zhang Gaosen,Ma Xiaojun,Niu Fujun,et al. Diversity and distribution of alkaliphilic psychrotolerant bacteria in the Qinghai- Tibet Plateau permafrost region[J]. Extremophiles,2007, 11(3):415-424. [12] Feng Huyuan,Ma Xiaojun, Zhang Gaosen, et al. Culturing and counting the microbial cells in permafrost on the Tibetan Plateau[J]. Journal of Glaciology and Geocryology,2004,26 (2):182-187. [冯虎元,马晓军,章高森,等. 青藏高原多年冻土微生物的培养和计数[J]. 冰川冻土,2004,26 (2):182-187.] [13] Zhang Gaosen, Niu Fujun,Ma Xiaojun, et al. Phylogenetic diversity of bacteria isolated from the Qinghai-Tibet Plateau permafrost region[J]. Canadian Journal of Microbiology, 2007, 53(8):1000-1010. [14] Chen Wei,Zhang Wei,Li Shiweng,et al. Feature of soil cultivable microorganism quantity and diversity distribution under different alpine grassland ecosystem in Qinghai- Tibet Plateau[J]. Journal of Glaciology and Geocryology, 2011, 33(6): 1419-1426. [陈伟,张威,李师翁,等. 青藏高原不同类型草地生态系统下土壤可培养细菌数量及多样性分布特征研究[J]. 冰川冻土,2011,33(6):1419-1426.] [15] Yang Aichen,Lü Jie,Lu Jianjiang. Bacteria isolated from soil samples of Hoh Xil-Tanggula Mountains[J]. Journal of Shihezi University,2012,30(5):545-550. [杨爱臣,吕杰,鲁建江. 可可西里-唐古拉山冻土区沉积物样品可培养微生物的研究[J]. 石河子大学学报,2012,30(5):545-550.] [16] Li Changming,Zhang Xinfan,Zhao Lin,et al. Phylogenetic diversity of bacteria isolated and community function in permafrost- affect soil along different vegetation types in the Qinghai- Tibet Plateau[J]. Journal of Glaciology and Geocryology, 2012,34(3):713-725. [李昌明,张新芳,赵林,等. 青藏高原多年冻土区土壤需氧可培养细菌多样性及群落功能研究[J]. 冰川冻土,2012,34(3):713-725.] [17] Cheng Guodong. Glaciology and Geocryology of China in the past 40 years:Progress and prospect[J]. Journal of Glaciology and Geocryology,1998,20(3):213-226. [程国栋. 中国冰川学和冻土学研究40 年进展和展望[J]. 冰川冻土, 1998,20(3):213-226.] [18] Zhang Zhen. Climate change recorded by sedimentary in Kunlun pass basin of Qinghai- Tibet Plateau[D]. Lanzhou: Lanzhou University,2007. [张振. 青藏高原昆仑山垭口盆地沉积记录的气候变化[D]. 兰州:兰州大学,2007.] [19] Yang Yuzhong,Wu Qingbai,Deng Yousheng,et al. Chemical composition of borehole gas in Kunlun pass basin in permafrost regions in Qinghai-Tibet Plateau[J]. Natural Gas Geoscience, 2011,22(6):1076-1081. [杨玉忠,吴青柏,邓友生,等. 昆仑山垭口多年冻土区钻孔气体组分分析[J]. 天然气地球化学,2011,22(6):1076-1081.] [20] Zhang Gaosen, Zhang Wei, Liu Guangxiu, et al. Distribution of aerobic heterotrophic bacteria managed by environmental factors in glacier foreland[J]. Journal of Glaciology and Geocryology, 2012,34(4):965-971. [章高森,张威,刘光琇,等. 环境因素主导着冰川前沿裸露地好氧异养细菌群落的分布[J]. 冰川冻土,2012,34(4):965-971.] [21] Zhang Baogui, Zhang Wei, Liu Guangxiu, et al. Effect of freeze-thaw cycles on the soil bacterial communities in different ecosystem soils in the Tibetan Plateau[J]. Journal of Glaciology and Geocryology,2012,34(6):1499-1507. [张宝贵, 张威,刘光琇,等. 冻融循环对青藏高原腹地不同生态系统土壤细菌群落结构的影响[J]. 冰川冻土,2012,34(6): 1499-1507.] [22] Massa S,Caruso M,Trovatelli F,et al. Comparison of plate count agar and R2A medium for enumeration of heterotrophic bacteria in natural mineral water[J]. World Journal of Microbiology and Biotechnology,1998,14(5):727-730. [23] Zhang Ling,Li Shiweng,Chen Ximing,et al. Streptomyces strains in the soils of the Tibetan Plateau:Isolation,identification and antimicrobial activity[J]. Journal of Glaciology and Geocryology,2014,36(2):430-441. [张玲,李师翁,陈熙明,等. 青藏高原土壤中链霉菌的分离鉴定及其抗菌活性研究[J]. 冰川冻土,2013,36(2):430-441.] [24]Wang Yilin,Ai Xue,Li Shiweng,et al. Isolation,identification and degradation characteristics of a low temperature crude oil degrading bacteria strain from the soil of Tibetan Plateau[J]. Journal of Glaciology and Geocryology,2015,37(2):528-537. [王艺霖,艾雪,李师翁,等. 青藏高原土壤中一株低温原油降解菌的分离鉴定及其原油降解特性[J]. 冰川冻土, 2015,37(2):528-537.] [25] Tao Ling,Gu Yanling,Zheng Xiaoji,et al. Cultivable bacteria isolated from the meltwater of the Glacier No.1 at headwater of the Ürümqi River in Tianshan Mountains:Physiological-bio-chemical characteristics and phylogeny[J]. Journal of Glaciology and Geocryology,2015,37(2):511-521. [陶玲,顾燕玲,郑晓吉,等. 天山乌鲁木齐河源1 号冰川融水可培养细菌生理生化特性及其系统发育[J]. 冰川冻土,2015,37 (2):511-521.] [26] Zhang Shuhong,Hou Shugui,Qin Xiang,et al. Preliminary research on the dominant bacterial population affected by retreat of the Laohugou Glacier No.12 in the Qilian Mountain[J]. Journal of Glaciology and Geocryology,2013,35(3):751-760.[张淑红,侯书贵,秦翔,等. 祁连山老虎沟12 号冰川退缩对细菌优势种群影响的初步研究[J]. 冰川冻土,2013,35 (3):751-760.] [27] Yang Xiuli,Zhang Baogui,Zhang Wei,et al. Characteristics of cultivable bacterial community in rhizosphere soil of Achnatherum splendens Trin in the upper reaches of the Shule River, Qilian Mountains[J]. Journal of Glaciology and Geocryology, 2014,36(1):222-229. [杨秀丽,张宝贵,张威, 等. 祁连山疏勒河上游芨芨草根际可培养细菌群落特征研究[J]. 冰川冻土,2014,36(1):222-229.] [28] Dong Kang,Li Shiweng,Kang Wenlong,et al. Study of the changes in microbe amount and its affect factors in the soils along the Qinghai- Tibet Highway[J]. Journal of Glaciology and Geocryology,2013,35(2):457-464. [董康,李师翁,康文龙,等. 青藏公路沿线土壤微生物数量变化及其影响因素研究[J]. 冰川冻土,2013,35(2):457-464.] [29] Dunbar J, Takala S, Barns S M, et al. Levels of bacterial community diversity in four arid soils compared by cultivation and 16S rRNA gene cloning[J]. Applied and Environmental Microbiology, 1999,65(4):1662-1669. [30] Giaramida L,Manage P M,Edwards C,et al. Bacterial communities' response to microsystems exposure and nutrient availability: Linking degradation capacity to community structure[J]. International Biodeterioration & Biodegradation, 2013, 84:111-117. [31]Wang Lu,Dong Xiaopei,Zhang Wei,et al. Quantitative characters of microorganisms in permafrost at different depths and their relation to soil physicochemical properties[J]. Journal of Glaciology and Geocryology,2011,33(2):436-441. [王鹭,董小培,张威,等. 不同深度冻土微生物数量特征及其与土壤理化性质的关系[J]. 冰川冻土,2011,33(2):436-441.] [32]Vorobyova E,Soina V,Gorlenko M,et al. The deep cold biosphere: facts and hypothesis[J]. FEMS Microbiology Reviews, 1997,20(3/4):277-290. [33] Zak D R,Grigal D F,Gleeson S,et al. Carbon and nitrogen cycling during old-field succession:constraints on plant and microbial biomass[J]. Biogeochemistry,1990,11(2):111-129. [34] Bardgett R D,Freeman C,Ostle N J. Microbial contributions to climate change through carbon cycle feedbacks[J]. The ISME journal,2008,2(8):805-814. [35] Shannon M H,Bhavaraju L,Jorge LM R,et al. Characterization of a bacterial community from a Northeast Siberian seacoast permafrost sample[J]. Microbiology Ecology,2010,74 (1):103-113. [36] Aislabie J M,Chhour K L,Saul D J,et al. Dominant bacteria in soils of Marble Point and Wright Valley, Victoria Land, Antarctica[J]. Soil Biology Biochemistry, 2006, 38(10): 3041-3056. [37] Zhang X F,Zhao L,Xu S J, et al. Soil moisture effect on bacterial and fungal community in Beilu River (Tibetan Plateau) permafrost soils with different vegetation types[J]. Journal of Applied Microbiology,2013,114(4):1054-1065. [38] Graham D E,Wallenstein M D,Vishnivetskaya T A, et al. Microbes in thawing permafrost: the unknown variable in the climate change equation[J]. The ISME journal,2012,6(4): 709-712. |