冰川冻土 ›› 2016, Vol. 38 ›› Issue (4): 943-954.doi: 10.7522/j.issn.1000-0240.2016.0108
汪丁建, 唐辉明, 张雅慧, 林成远, 赵萌
收稿日期:
2016-02-05
修回日期:
2016-07-23
出版日期:
2016-08-25
发布日期:
2016-09-19
通讯作者:
唐辉明,E-mail:tanghm@cug.edu.cn.
E-mail:tanghm@cug.edu.cn
作者简介:
汪丁建(1991-),男,安徽安庆人,2014年毕业于中国地质大学(武汉),现为在读博士研究生,从事工程地质与岩土工程方面的研究.E-mail:djwang1991@foxmail.com
基金资助:
WANG Dingjian, TANG Huiming, ZHANG Yahui, LIN Chengyuan, ZHAO Meng
Received:
2016-02-05
Revised:
2016-07-23
Online:
2016-08-25
Published:
2016-09-19
摘要: 粗粒土既是一种天然地质体,又能用作建筑材料,在自然界中广泛存在,其力学性质研究对实际工程实践至关重要.在大量关于粗粒土试验与力学性质研究文献的基础上做了以下分析和总结:将粗粒土试验分为三类,包括室内试验、原位试验和数值试验,分别对每种试验的试验原理、仪器、方法和适用范围进行了详细介绍;根据粗粒土力学性质研究现状,重点对粗粒土的剪胀性、颗粒破碎性和软化性这三种特性从形成机制、影响因素和描述方法上进行了深入总结.在此基础上,指出粗粒土力学性质研究方面存在如下不足:现有方法和理论存在一定局限性、宏观特性发生机理假设缺乏客观验证、宏观特性难以用细观力学演绎、多相耦合下的力学性质鲜有研究.最后,从试验、理论和数值仿真试验角度提出关于粗粒土力学性质研究的展望.
中图分类号:
汪丁建, 唐辉明, 张雅慧, 林成远, 赵萌. 粗粒土试验与力学特性研究现状[J]. 冰川冻土, 2016, 38(4): 943-954.
WANG Dingjian, TANG Huiming, ZHANG Yahui, LIN Chengyuan, ZHAO Meng. Research progress on mechanical tests and properties of coarse-grained soil[J]. JOURNAL OF GLACIOLOGY AND GEOCRYOLOGY, 2016, 38(4): 943-954.
[1] Guo Qinguo. Research and application of the engineering properties of coarse-grained soil[M]. Zhengzhou: Yellow River Water Conservancy Press, 1998. [郭庆国. 粗粒土的工程特性及应用[M]. 郑州: 黄河水利出版社, 1998.] [2] Xu Wenjie, Hu Ruilin. Conception classification and significations of soil-rock mixture[J]. Hydrogeology & Engineering Geology, 2009, 36(4): 50-56. [徐文杰, 胡瑞林. 土石混合体概念分类及意义[J]. 水文地质工程地质, 2009, 36(4): 50-56.] [3] Tang H, Li C, Hu X, et al. Evolution characteristics of the Huangtupo landslide based on in situ tunneling and monitoring[J]. Landslides, 2015, 12(3): 511-521. [4] Zhang S, Tang H, Zhan H, et al. Investigation of scale effect of numerical unconfined compression strengths of virtual colluvial-deluvial soil-rock mixture[J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 77: 208-219. [5] Hu Xinli, Sun Miaojun, Tang Huiming, et al. Creep tests of gravel-soil of Majiagou landslide in Three Gorges Reservoir area[J]. Rock and Soil Mechanics, 2014, 35(11): 3164-3169. [胡新丽, 孙淼军, 唐辉明, 等. 三峡库区马家沟滑坡滑体粗粒土蠕变试验研究[J]. 岩土力学, 2014, 35(11): 3164-3169.] [6] Li Xiao, Li Shouding, Chen Jian, et al. Coupling effect mechanism of endogenous and exogenous geologic process of geological hazards evolution[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(9): 1792-1806. [李晓, 李守定, 陈剑, 等. 地质灾害形成的内外动力耦合作用机制[J]. 岩石力学与工程学报, 2008, 27(9): 1792-1806.] [7] Wan C F, Fell R. Investigation of rate of erosion of soils in embankment dams[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(4): 373-380. [8] Indraratna B, Ionescu D, Christie H D. Shear behavior of railway ballast based on large-scale triaxial tests[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(5): 439-449. [9] Hardin B O, Kalinski M E. Estimating the shear modulus of gravelly soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(7): 867-875. [10] Indraratna B, Nimbalkar S, Coop M, et al. A constitutive model for coal-fouled ballast capturing the effects of particle degradation[J]. Computers and Geotechnics, 2014, 61: 96-107. [11] Xu M, Song E. Numerical simulation of the shear behavior of rockfills[J]. Computers and Geotechnics, 2009, 36(8): 1259-1264. [12] Song Binghui, Chen Wenwu, Wu Weijiang, et al. Experimental study of large scale direct shear test of sliding zone soil of Suoertou landslide with different moisture contents[J]. Rock and Soil Mechanics, 2012, 33(S2): 77-84. [宋丙辉, 谌文武, 吴玮江, 等. 锁儿头滑坡滑带土不同含水率大剪试验研究[J]. 岩土力学, 2012, 33(S2): 77-84.] [13] Song Jihong, Hu Mingjian, Fu Kejian, et al. Strength behavior of rock debris heaps with different density in Yiba expressway[J]. Journal of Engineering Geology, 2012, 20(5): 687-692. [宋继宏, 胡明鉴, 付克俭, 等. 宜巴高速岩堆不同密实度大型直剪强度特性[J]. 工程地质学报, 2012, 20(5): 687-692.] [14] Wang Jiangying, Cao Wengui, Zhang Chao, et al. Large-scale direct shear tests on soil-rock aggregate mixture under complicated environment based on orthogonal design[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(10): 1849-1856. [王江营, 曹文贵, 张超, 等. 基于正交设计的复杂环境下土石混填体大型直剪试验研究[J]. 岩土工程学报, 2013, 35(10): 1849-1856.] [15] Xu Xiaofeng. Wei Houzhen, Meng Qingshan, et al. Effects of shear rate on shear strength and deformation characteristics of coarse-grained soils in large-scale direct shear tests[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(4): 728-733. [徐肖峰, 魏厚振, 孟庆山, 等. 直剪剪切速率对粗粒土强度与变形特性的影响[J]. 岩土工程学报, 2013, 35(4): 728-733.] [16] Wang Guangjin, Yang Chunhe, Zhang Chao, et al. Experimental research on particle breakage and strength characteristics of rock and soil materials with different coarse-grain contents[J]. Rock and Soil Mechanics, 2009, 30(12): 3649-3654. [王光进, 杨春和, 张超, 等. 粗粒含量对散体岩土颗粒破碎及强度特性试验研究[J]. 岩土力学, 2009, 30(12): 3649-3654.] [17] Li Xuemei, Li Hongwen, Fang Huajian. Comparative study crushing of coarse-grained soil by large direct shear tests[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S1): 3581-3587. [李雪梅, 李红文, 方华建. 基于大型直剪试验的粗粒料颗粒破碎对比研究[J]. 岩石力学与工程学报, 2015, 34(S1): 3581-3587.] [18] Shi Xiong, Zhang Jiasheng, Deng Guodong, et al. Experimental research on shearing property of red clay-concrete interface under cyclic loading[J]. Journal of Railway Science and Engineering, 2014, 11(3): 88-93. [石熊, 张家生, 邓国栋, 等. 循环荷载作用下红黏土与混凝土接触面剪切特性试验研究[J]. 铁道科学与工程学报, 2014, 11(3): 88-93.] [19] Tong Jun, Hu Bo, Gong Biwei, et al. Friction characteristic of the interface between composite geomembrane and coarse sand-gravel[J]. Journal of Yangtze River Scientific Research Institute, 2014, 31(3): 73-76. [童军, 胡波, 龚壁卫, 等. 复合土工膜砂砾料界面摩擦特性研究[J]. 长江科学院院报, 2014, 31(3): 73-76.] [20] Wang Jun, Lin Xu, Liu Feiyu, et al. Research on interaction of geogrid and sand interface by direct shear tests[J]. Rock and Soil Mechanics, 2014, 35(S1): 113-120. [王军, 林旭, 刘飞禹, 等. 砂土与格栅界面相互作用的直剪试验研究[J]. 岩土力学, 2014, 35(S1): 113-120.] [21] Feng Junde, Li Jianguo, Wang Ren, et al. Large scale direct shear test on strength behavior of railwaymoraine soils in Yunnan[J]. Rock and Soil Mechanics, 2008, 29(12): 3205-3210. [冯俊德, 李建国, 汪稔, 等. 云南某铁路冰碛土大型直剪强度特性试验研究[J]. 岩土力学, 2008, 29(12): 3205-3210.] [22] Zhao Lianzhen, Yang Ping, Wang Haibo. Development and application of large-scale multi-functional frozensoil-structure interface cycle-shearing system[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(4): 707-713. [赵联桢, 杨平, 王海波. 大型多功能冻土-结构接触面循环直剪系统研制及应用[J]. 岩土工程学报, 2013, 35(4): 707-713.] [23] Xu Xianhai, Zhang Jujun, Zhang Yapeng. Experimental research on coal gangue shear strength[J]. Bulletin of the Chinese Ceramic Society, 2014, 33(3): 682-685. [徐献海, 张聚军, 张亚鹏. 煤矸石抗剪强度试验研究[J]. 硅酸盐通报, 2014, 33(3): 682-685.] [24] Dong Yun, Chai Hejun. Improvement study of lab large-scale direct shear test of rock-soil aggregate mixture[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(11): 94-98. [董云, 柴贺军. 土石混合料室内大型直剪试验的改进研究[J]. 岩土工程学报, 2005, 27(11): 94-98.] [25] Min Hong, Liu Xiaoli, Wei Jinbing, et al. A new large direct shear apparatus for field and laboratory test (I): configuration[J]. Rock and Soil Mechanics, 2006, 27(1): 168-172. [闵弘, 刘小丽, 魏进兵, 等. 现场室内两用大型直剪仪研制(I): 结构设计[J]. 岩土力学, 2006, 27(1): 168-172.] [26] Liu Xiaoli, Luo Jintian, Min Hong, et al. A new large direct shear apparatus for field and laboratory test (II): proof-testing[J]. Rock and Soil Mechanics, 2006, 27(2): 336-340. [刘小丽, 罗锦添, 闵弘, 等. 大型现场室内两用直剪仪研制(II): 试验测试[J]. 岩土力学, 2006, 27(2): 336-340.] [27] Shi Jianyong, Qian Xuede, Zhu Baokun. Development and tests of large-scale inclined direct shear apparatus[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(4): 754-761. [施建勇, 钱学德, 朱保坤. 大型斜面剪切仪的研制和试验[J]. 岩土工程学报, 2013, 35(4): 754-761.] [28] Trinh V N, Tang A M, Cui Y J, et al. Mechanical characterisation of the fouled ballast in ancient railway track substructure by large-scale triaxial tests[J]. Soils and Foundations, 2012, 52(3): 511-523. [29] Varadarajan A, Sharma K G, Venkatachalam K, et al. Testing and modeling two rockfill materials[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(3): 206-218. [30] Zheng Ruihua, Zhang Jianmin, Zhang Ga, et al. Large-scale triaxial tests on rockfills of Jishixia CFRD[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(S1): 177-181. [郑瑞华, 张建民, 张嘎, 等. 积石峡面板堆石坝材料大型三轴试验研究[J]. 岩土工程学报, 2011, 33(S1): 177-181.] [31] Qin Shanglin, Chen Shanxiong, Han Zhuo, et al. Large-scale triaxial test study of behavior of over coarse-grained soils[J]. Rock and Soil Mechanics, 2010, 31(S2): 189-192. [秦尚林, 陈善雄, 韩卓, 等. 巨粒土大型三轴试验研究[J]. 岩土力学, 2010, 31(S2): 189-192.] [32] Xiao Y, Liu H, Chen Y, et al. Bounding surface model for rockfill materials dependent on density and pressure under triaxial stress conditions[J]. Journal of Engineering Mechanics, 2014, 140(4): 8087-8096. [33] Shi Xiong, Zhang Jiasheng, Meng Fei, et al. Large-scale triaxial test on modified coarse-grained fillers[J]. Journal of Central South University: Science and Technology, 2015, 46(2): 645-652. [石熊, 张家生, 孟飞, 等. 改良粗粒土填料大型三轴试验[J]. 中南大学学报: 自然科学版, 2015, 46(2): 645-652.] [34] Chu B L, Jou Y W, Weng M C. A constitutive model for gravelly soils considering shear-induced volumetric deformation[J]. Canadian Geotechnical Journal, 2010, 47(6): 662-673. [35] Wang Chen, Lei Yunbo, Liu Haowu, et al. Large-scale triaxial tests on reinforced red soil[J]. Journal of Sichuan University: Engineering Science Edition, 2004, 35(4): 14-166. [王琛, 雷运波, 刘浩吾, 等. 加筋红土大型三轴试验研究[J]. 四川大学学报: 工程科学版, 2004, 35(4): 14-16.] [36] Li Na, He Xianfeng, Zhang Bin, et al. Study of mechanical properties of cemented sand and rockfill material based on large-scale triaxial tests[J]. Journal of Hydroelectric Engineering, 2014, 33(6): 202-208. [李娜, 何鲜峰, 张斌, 等. 基于大型三轴试验的胶凝堆石料力学特性试验研究[J]. 水力发电学报, 2014, 33(6): 202-208.] [37] Chu Fuyong, Zhu Jungao, Yin Jianhua. Study of shear dilatancy behaviors of coarse-grained soil in large-scale triaxial tests under K0-consolidation condition[J]. Rock and Soil Mechanics, 2013, 34(12): 3431-3436. [褚福永, 朱俊高, 殷建华. K0固结粗粒土剪胀特性大型三轴试验研究[J]. 岩土力学, 2013, 34(12): 3431-3436.] [38] Chu Fuyong, Zhu Jungao, Jia Hua, et al. Experimental study of mechanical behavior of coarse-grained soil in unloading and reloading[J]. Rock and Soil Mechanics, 2012, 33(4): 1061-1066. [褚福永, 朱俊高, 贾华, 等. 粗粒土卸载-再加载力学特性试验研究[J]. 岩土力学, 2012, 33(4): 1061-1066.] [39] Zhu Jungao, Mohamed A A, Gong Xuan, et al. Triaxial tests on wetting deformation behavior of a slate rockfill material[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(1): 170-174. [朱俊高, Mohamed A A, 龚选, 等. 某板岩粗粒料湿化特性三轴试验研究[J]. 岩土工程学报, 2013, 35(1): 170-174.] [40] Zhang Kunyong, Zhu Jungao, Wu Xiaoming, et al. True triaxial test on clay mixed with gravel under complex stress state[J]. Rock and Soil Mechanics, 2010, 31(9): 2799-2804. [张坤勇, 朱俊高, 吴晓铭, 等. 复杂应力条件下掺砾黏土真三轴试验[J]. 岩土力学, 2010, 31(9): 2799-2804.] [41] Shi Weicheng, Zhu Jungao, Dai Guozhong, et al. True triaxial tests on influence of spherical and deviatoric stresses on deformation of coarse-grained soil[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(5): 776-783. [施维成, 朱俊高, 代国忠, 等. 球应力和偏应力对粗粒土变形影响的真三轴试验研究[J]. 岩土工程学报, 2015, 37(5): 776-783.] [42] Shi Weicheng, Zhu Jungao, Zhang Kunyong, et al. Experimental study of deformation characteristics of coarse-grained soil under plane strain condition[J]. Rock and Soil Mechanics, 2013, 34(1): 101-108. [施维成, 朱俊高, 张坤勇, 等. 平面应变条件下粗粒土的变形特性试验研究[J]. 岩土力学, 2013, 34(1): 101-108.] [43] Hu Wei, Min Hong, Chen Jian, et al. Improvement of a large scale in-situ direct shear test apparatus and its application[J]. Rock and Soil Mechanics, 2015, 36(3): 905-912. [胡伟, 闵弘, 陈健, 等. 大型原位直剪试验设备改进研制与应用[J]. 岩土力学, 2015, 36(3): 905-912.] [44] Yang Jihong, Dong Jinyu, Liu Handong, et al. In situ direct shear test on the large scale accumulation body and three-dimensional stability analysis of the slope[J]. Journal of China Coal Society, 2010(3): 392-395. [杨继红, 董金玉, 刘汉东, 等. 大型堆积体原位直剪试验研究及三维稳定性分析[J]. 煤炭学报, 2010(3): 392-395.] [45] Xiong Shihu, Bian Zhihua, Yang Yi. Uncertainty of in-situ slide zone soil shear test condition and shear strength parameters estimation based on BP network[J]. Rock and Soil Mechanics, 2006, 27(S1): 1145-1148. [熊诗湖, 边智华, 杨宜. 滑带土原位直剪试验条件的不确定性及基于BP网络的抗剪强度参数估计[J]. 岩土力学, 2006, 27(S1): 1145-1148.] [46] Xu Wenjie, Hu Ruilin, Tan Rujiao. Application of 3D limit-equilibrium method for in-situ horizontal push-shear test[J]. Hydrogeology & Engineering Geology, 2006, 33(6): 43-47. [徐文杰, 胡瑞林, 谭儒蛟. 三维极限平衡法在原位水平推剪试验中的应用[J]. 水文地质工程地质, 2006, 33(6): 43-47.] [47] Guo Jie, Ma Fengshan, Zhao Haijun, et al. Application and improvement of rock and soil mass shear test device[J]. Chinese Journal of Underground Space and Engineering, 2011, 7(6): 1143-1147. [郭捷, 马凤山, 赵海军, 等. 岩土体现场水平推剪试验装置的应用及改进探讨[J]. 地下空间与工程学报, 2011, 7(6): 1143-1147.] [48] Yue Z Q, Chen S, Tham L G. Finite element modeling of geomaterials using digital image processing[J]. Computers and Geotechnics, 2003, 30(5): 375-397. [49] Chen S, Yue Z Q, Tham L G. Digital image-based numerical modeling method for prediction of inhomogeneous rock failure[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(6): 939-957. [50] Xu W J, Yue Z Q, Hu R L. Study on the mesostructure and mesomechanical characteristics of the soil-rock mixture using digital image processing based finite element method[J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(5): 749-762. [51] Xu Wenjie, Hu Ruilin, Yue Zhongqi, et al. Mesostructural character and numerical simulation mechanical properties of soil-rock mixture[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(2): 300-311. [徐文杰, 胡瑞林, 岳中琦, 等. 土石混合体细观结构及力学特性数值模拟研究[J]. 岩石力学与工程学报, 2007, 26(2): 300-311.] [52] Huang Maosong, Sun Haizhong, Qian Jiangu. Non-coaxial behavior of coarse granular aggregates simulated by DEM[J]. Journal of Hydraulic Engineering, 2010, 41(2): 173-181. [黄茂松, 孙海忠, 钱建固. 粗粒土的非共轴性及其离散元数值模拟[J]. 水利学报, 2010, 41(2): 173-181.] [53] Zhou Wei, Liu Dong, Ma Gang, et al. Numerical simulation of true triaxial tests on mechanical behaviors of rockfill based on stochastic granule model[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(4): 748-755. [周伟, 刘东, 马刚, 等. 基于随机散粒体模型的堆石体真三轴数值试验研究[J]. 岩土工程学报, 2012, 34(4): 748-755.] [54] Zhou Wei, Xie Tingting, Ma Gang, et al. Stress and deformation analysis of rockfill in true triaxial stress conditions based on PFC[J]. Rock and Soil Mechanics, 2012, 33(10): 3006-3012. [周伟, 谢婷蜓, 马刚, 等. 基于颗粒流程序的真三轴应力状态下堆石体的变形和强度特性研究[J]. 岩土力学, 2012, 33(10): 3006-3012.] [55] Zhou Wei, Chang Xiaolin, Zhou Chuangbing, et al. Stochastic granule discontinuous deformation model of rockfill and its application[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(3): 491-499. [周伟, 常晓林, 周创兵, 等. 堆石体应力变形细观模拟的随机散粒体不连续变形模型及其应用[J]. 岩石力学与工程学报, 2009, 28(3): 491-499.] [56] Ma Gang, Zhou Wei, Chang Xiaolin, et al. 3D mesoscopic numerical simulation of triaxial shear tests for rockfill[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(5): 746-753. [马刚, 周伟, 常晓林, 等. 堆石体三轴剪切试验的三维细观数值模拟[J]. 岩土工程学报, 2011, 33(5): 746-753.] [57] Ma Gang, Zhou Wei, Chang Xiaolin, et al. Mesomechanically numerical simulation of rockfill rheology based on particle deterioration[J]. Rock and Soil Mechanics, 2012, 33(S1): 257-264. [马刚, 周伟, 常晓林, 等. 颗粒劣化效应的堆石料流变细观数值模拟[J]. 岩土力学, 2012, 33(S1): 257-264.] [58] Guo Peixi, Lin Shaozhong. Numerical simulation of mechanical characteristics of coarse granular materials by discontinuous deformation analysis[J]. Journal of Yangtze River Scientific Research Institute, 2008, 25(1): 58-60. [郭培玺, 林绍忠. 粗粒料力学特性的DDA数值模拟[J]. 长江科学院院报, 2008, 25(1): 58-60.] [59] Jin Lei, Zeng Yawu, Li Huan, et al. Numerical simulation of large-scale triaxial tests on soil-rock mixture based on DEM of irregularly shaped particles[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(5): 829-838. [金磊, 曾亚武, 李欢, 等. 基于不规则颗粒离散元的土石混合体大三轴数值模拟[J]. 岩土工程学报, 2015, 37(5): 829-838.] [60] Yao Yangping, Hou Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. Rock and Soil Mechanics, 2009, 30(10): 2881-2902. [姚仰平, 侯伟. 土的基本力学特性及其弹塑性描述[J]. 岩土力学, 2009, 30(10): 2881-2902.] [61] Yao Yangping, Zhang Bingyin, Zhu Jungao. Behaviors, constitutive models and numerical simulation of soils[J]. China Civil Engineering Journal, 2012, 45(3): 127-150. [姚仰平, 张丙印, 朱俊高. 土的基本特性、本构关系及数值模拟研究综述[J]. 土木工程学报, 2012, 45(3): 127-150.] [62] Rowe P W. The stress-dilatancy relation for static equilibrium of an assembly of particles in contact[J]. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 1962, 269(1339): 500-527. [63] Roscoe K H, Burland J B. On the generalized stress-strain behaviour of wet clay[M]. Cambridge, England: Cambridge University Press, 1968: 535-609. [64] Shen Zhujiang. Theoretical soil mechanics[M]. Beijing: China Water & Power Press, 2000. [沈珠江. 理论土力学[M]. 北京: 中国水利水电出版社, 2000.] [65] Cheng Zhanlin, Jiang Jingshan, Ding Hongshun, et al. Nonlinear dilatancy model for coarse-grained soils[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(3): 460-467. [程展林, 姜景山, 丁红顺, 等. 粗粒土非线性剪胀模型研究[J]. 岩土工程学报, 2010, 32(3): 460-467.] [66] Jiang Jingshan, Cheng Zhanlin, Zuo Yongzhen, et al. Dilatancy of coarse-grained soil in large-scale triaxial tests study[J]. Rock and Soil Mechanics, 2014, 35(11): 3129-3138. [姜景山, 程展林, 左永振, 等. 粗粒土剪胀性大型三轴试验研究[J]. 岩土力学, 2014, 35(11): 3129-3138.] [67] Liu Kaiming, Qu Zhijiong. The engineering properties and constitutive model of coarse granular soils[J]. Journal of Chengdu University of Science and Technology, 1993(6): 93-102. [刘开明, 屈智炯. 粗粒土的工程特性及本构模型研究[J]. 成都科技大学学报, 1993(6): 93-102.] [68] Jiang Jingshan, Liu Hanlong, Cheng Zhanlin, et al. Influence of density and confining pressure on mechanical properties of coarse grained soil[J]. Journal of Yangtze River Scientific Research Institute, 2009, 26(8): 46-50. [姜景山, 刘汉龙, 程展林, 等. 密度和围压对粗粒土力学性质的影响[J]. 长江科学院院报, 2009, 26(8): 46-50.] [69] Chu Fuyong, Zhu Jungao, Yin Jianhua. Study of dilatancy behaviors of coarse-grained soils in large-scale triaxial test[J]. Rock and Soil Mechanics, 2013, 34(8): 2249-2254. [褚福永, 朱俊高, 殷建华. 基于大三轴试验的粗粒土剪胀性研究[J]. 岩土力学, 2013, 34(8): 2249-2254.] [70] Wei Song, Zhu Jungao, Qian Qihu, et al. Particle breakage of coarse-grained materials in triaxial tests[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(4): 533-538. [魏松, 朱俊高, 钱七虎, 等. 粗粒料颗粒破碎三轴试验研究[J]. 岩土工程学报, 2009, 31(4): 533-538.] [71] Yang Guang, Zhang Bingyin, Yu Yuzhen, et al. An experimental study on particle breakage of coarse-grained materials under various stress paths[J]. Journal of Hydraulic Engineering, 2010, 41(3): 338-342. [杨光, 张丙印, 于玉贞, 等. 不同应力路径下粗粒料的颗粒破碎试验研究[J]. 水利学报, 2010, 41(3): 338-342.] [72] Liang Jun, Liu Hanlong, Gao Yufeng. Creep mechanism and breakage behavior of rockfill[J]. Rock and Soil Mechanics, 2003, 24(3): 479-483. [梁军, 刘汉龙, 高玉峰. 堆石蠕变机理分析与颗粒破碎特性研究[J]. 岩土力学, 2003, 24(3): 479-483.] [73] Marsal R J. Large-scale testing of rockfill materials[J]. Journal of the Soil Mechanics and Foundations Division, 1967, 93(2): 27-43. [74] Marsal R J. Mechanical properties of rockfill embankment dam engineering[M]. New York: Wiley, 1973: 109-200. [75] Hardin B O. Crushing of soil particles[J]. Journal of Geotechnical Engineering, 1985, 111(10): 1177-1192. [76] Lade P V, Yamamuro J A, Bopp P A. Significance of particle crushing in granular materials[J]. Journal of Geotechnical Engineering, 1996, 122(4): 309-316. [77] Xu Riqing, Chang Shuai, Li Xuegang, et al. Quantitative method for crushing of granular soils based on discarding parameters[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(12): 2179-2185. [徐日庆, 畅帅, 李雪刚, 等. 基于裂离参量的粒状土颗粒破碎量化方法[J]. 岩土工程学报, 2013, 35(12): 2179-2185.] [78] Bai Shutian, Cui Yihao. The mechanical properties of rockfill[J]. Journal of Hydroelectric Engineering, 1997, 58(3): 21-30. [柏树田, 崔亦昊. 堆石的力学性质[J]. 水力发电学报, 1997, 58(3): 21-30.] [79] Du Jun, Hou Kepeng, Liang Wei, et al. Experimental study of compaction characteristics and fractal feature in crushing of coarse-grained soils[J]. Rock and Soil Mechanics, 2013, 34(S1): 155-161. [杜俊, 侯克鹏, 梁维, 等. 粗粒土压实特性及颗粒破碎分形特征试验研究[J]. 岩土力学, 2013, 34(S1): 155-161.] [80] Tong Chenxi, Zhang Sheng, Li Xi, et al. Evolution of geotechnical materials based on Markov chain considering particle crushing[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(5): 870-877. [童晨曦, 张升, 李希, 等. 基于Markov链的岩土材料颗粒破碎演化规律研究[J]. 岩土工程学报, 2015, 37(5): 870-877.] [81] Chi Shichun, Jia Yufeng. Rowe's stress-dilatancy model modified for energy dissipation of particle breakage[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(11): 31-34. [迟世春, 贾宇峰. 土颗粒破碎耗能对罗维剪胀模型的修正[J]. 岩土工程学报, 2005, 27(11): 31-34.] [82] Salim W, Indraratna B. A new elastoplastic constitutive model for coarse granular aggregates incorporating particle breakage[J]. Canadian Geotechnical Journal, 2004, 41(4): 657-671. [83] Sun Jizhu, Shi Geliang. Study of strain softening and dilatancy modelling based on stateparameter of coarse grained soil[J]. Rock and Soil Mechanics, 2008, 29(11): 3109-3112. [孙吉主, 施戈亮. 基于状态参数的粗粒土应变软化和剪胀性模型研究[J]. 岩土力学, 2008, 29(11): 3109-3112.] [84] Manzari M T, Dafalias Y F. A critical state two-surface plasticity model for sands[J]. Geotechnique, 1997, 47(2): 255-272. [85] Xiao Y, Liu H, Chen Y, et al. Testing and modeling of the state-dependent behaviors of rockfill material[J]. Computers and Geotechnics, 2014, 61: 153-165. [86] Wei Kuangmin, Chen Shengshui, Li Guoying, et al. Constitutive model for coarse-grained dam materials considering state parameter[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 654-661. [魏匡民, 陈生水, 李国英, 等. 基于状态参数的筑坝粗粒土本构模型[J]. 岩土工程学报, 2016, 38(4): 654-661.] [87] Xu Anhua. A study of anti-freezing properties of cement-stabilized gravels in permafrost regions[J]. Journal of Glaciology and Geocryology, 2014, 36(1): 152-157. [徐安花. 多年冻土区水泥稳定砂砾基层抗冻性能研究[J]. 冰川冻土, 2014, 36(1): 152-157.] [88] Li Anyuan, Niu Yonghong, Niu Fujun, et al. Research status of frost heaving properties and controlling measures of coarse grained soil[J]. Journal of Glaciology and Geocryology, 2015, 37(1): 202-210. [李安原, 牛永红, 牛富俊, 等. 粗颗粒土冻胀特性和防治措施研究现状[J]. 冰川冻土, 2015, 37(1): 202-210.] [89] Zhang Hao, She Xuesen, Lu Zhongju. Waterfall ice on highway: ice-forming mechanisms and controlling measures[J]. Journal of Glaciology and Geocryology, 2015, 37(6): 1571-1578. [张浩, 折学森, 鲁中举. 公路涎流冰的成冰机理与新型防治措施研究[J]. 冰川冻土, 2015, 37(6): 1571-1578.] |
[1] | 雷乐乐, 谢艳丽, 王大雁, 陈敦, 靳潇. 冻土静力学室内试验研究进展[J]. 冰川冻土, 2018, 40(4): 802-811. |
[2] | 何瑞霞, 金会军, 赵淑萍, 邓友生. 冻土导热系数研究现状及进展[J]. 冰川冻土, 2018, 40(1): 116-126. |
[3] | 张文清, 李承成, 刘德仁, 杨成, 牛亚强. 季节冻土区保温隔水路基防冻胀效果研究[J]. 冰川冻土, 2017, 39(6): 1258-1264. |
[4] | 王彦虎, 王旭, 杨楠, 王跃武, 张延杰. 钻孔埋管注盐法整治季节冻土区路基冻害现场试验研究[J]. 冰川冻土, 2017, 39(6): 1265-1272. |
[5] | 陈渤黎, 罗斯琼, 吕世华, 方雪薇, 常燕. 基于CLM模式的青藏高原土壤冻融过程陆面特征研究[J]. 冰川冻土, 2017, 39(4): 760-770. |
[6] | 章新平, 关华德, 张新主, 张婉君, 姚天次. 下垫面蒸发和云中凝结分馏对降水稳定同位素影响的数值试验——空间分布的比较[J]. 冰川冻土, 2017, 39(3): 455-468. |
[7] | 章新平, 关华德, 张新主, 张婉君, 姚天次. 下垫面蒸发和云中凝结分馏对降水稳定同位素影响的数值试验——时间变化的比较(以长沙降水同位素为例)[J]. 冰川冻土, 2017, 39(3): 469-478. |
[8] | 谌文武, 刘伟, 林高潮, 孙冠平, 吴玮江. 黄土-泥岩接触面滑坡滑带土力学特征研究[J]. 冰川冻土, 2017, 39(3): 593-601. |
[9] | 吉延峻, 贾昆, 俞祁浩, 金会军, 郭磊, 罗晓晓. 现浇混凝土-冻土接触面冻结强度直剪试验研究[J]. 冰川冻土, 2017, 39(1): 86-91. |
[10] | 黄龙, 盛煜, 胡晓莹, 王生廷. 冻土区管土相互作用研究综述[J]. 冰川冻土, 2017, 39(1): 112-122. |
[11] | 罗要飞, 张争奇, 张苛. 高原寒冷地区温拌沥青混合料水稳性能分析[J]. 冰川冻土, 2016, 38(6): 1592-1597. |
[12] | 陈军浩, 李栋伟. 多圈管冻结温度场特征分析及工程应用[J]. 冰川冻土, 2016, 38(6): 1568-1574. |
[13] | 王冲, 赖远明, 尤哲敏, 杨勇, 余东合, 刘国华. 温度和含水状态对岩石劈裂强度影响的试验研究[J]. 冰川冻土, 2016, 38(5): 1317-1324. |
[14] | 罗飞, 赵淑萍, 马巍, 蔡聪. 冻结黏土的动力学参数确定方法研究[J]. 冰川冻土, 2016, 38(5): 1340-1345. |
[15] | 黄星, 李东庆, 明锋, 邴慧, 彭万巍. 冻土的单轴抗压、抗拉强度特性试验研究[J]. 冰川冻土, 2016, 38(5): 1346-1352. |
|
©2018 冰川冻土编辑部
电话:0931-8260767 E-mail: edjgg@lzb.ac.cn 邮编:730000