冰川冻土 ›› 2016, Vol. 38 ›› Issue (6): 1644-1657.doi: 10.7522/j.issn.1000-0240.2016.0192
张熙胤1,2, 张明义1, 路建国1,2, 裴万胜1, 晏忠瑞1,2
收稿日期:
2016-05-27
修回日期:
2016-09-06
出版日期:
2016-12-25
发布日期:
2017-04-06
通讯作者:
张明义,E-mail:myzhang@lzb.ac.cn
E-mail:myzhang@lzb.ac.cn
作者简介:
张熙胤(1989-),男,甘肃会宁人,2011年毕业于兰州交通大学,现为中国科学院寒区旱区环境与工程研究所在读博士研究生,从事冻土与寒区工程方面的研究.E-mail:zhangxiyin@lzb.ac.cn
基金资助:
国家自然科学基金项目(41471063);中国科学院“百人计划”项目(张明义);冻土工程国家重点实验室自主研究课题(SKLFSE-ZT-23);中国科学院西部行动计划项目(KZCX2-XB3-19);中国科学院STS项目(HHS-TSS-STS-1502);中国科学院青年创新促进会(2012300,张明义)资助
ZHANG Xiyin1,2, ZHANG Mingyi1, LU Jianguo1,2, PEI Wansheng1, YAN Zhongrui1,2
Received:
2016-05-27
Revised:
2016-09-06
Online:
2016-12-25
Published:
2017-04-06
摘要:
冻土中水分迁移是导致土体冻胀的关键因素,而研究水分迁移及其驱动力的核心问题是要充分理解未冻水含量与温度、基质吸力等变量之间的关系,这些关系可充分体现土体在冻融过程中土水变化特征。长期以来,对土体冻融特征的研究采取的是与非饱和土力学中的土水特征类比的方法进行,结果也证明了二者存在一定的相似性。但是冻土中因冰-水相界面作用产生基质吸力与融土中水-气相界面作用产生基质吸力的机理并不完全相同,而由于相变等其他作用产生的冻融滞后效应与融土中孔隙“墨水瓶效应”等引起的滞后效应机理也有区别。针对这些机理性的不同,还需要做大量的研究工作才能真正揭示土体的冻融特征。通过对目前土体冻融特征方面研究进展和存在问题的归纳总结,笔者认为今后在这方面还需深入开展如下研究:建立适合各类土壤冻融特征的一般预测模型,使得在缺少数据条件下能快速获取所需土样的冻融特征;研究土体在冻融和干湿变化过程中存在的类似性及区别,对冻融过程中存在的滞后效应机理给出合理的解释;提升冻融特征变量的测试技术水平,研发高精度的相关仪器设备。
中图分类号:
张熙胤, 张明义, 路建国, 裴万胜, 晏忠瑞. 土体冻融特征研究现状与展望[J]. 冰川冻土, 2016, 38(6): 1644-1657.
ZHANG Xiyin, ZHANG Mingyi, LU Jianguo, PEI Wansheng, YAN Zhongrui. Study of the freezing and thawing features of soil: current situation and outlook[J]. JOURNAL OF GLACIOLOGY AND GEOCRYOLOGY, 2016, 38(6): 1644-1657.
[1] Russell A. Fractal soil-water characteristics with hysteresis[M]//Unsaturated soils:research and applications. Berlin:Springer, 2012:47-53.[2] Spaans E J A, Baker J M. The soil freezing characteristic:its measurement and similarity to the soil moisture characteristic[J]. Soil Science Society of America Journal, 1996, 60(1):13-19.[3] Bittelli M, Flury M, Campbell G S. A thermodielectric analyzer to measure the freezing and moisture characteristic of porous media[J]. Water Resources Research, 2003, 39(2). DOI:10.1029/2001WR000930.[4] Koopmans R W R, Miller R D. Soil freezing and soil water characteristic curves[J]. Soil Science Society of America Proceedings, 1966, 30(6):680-685.[5] Flerchinger G N, Seyfried M S, Hardegree S P. Using soil freezing characteristics to model multi-season soil water dynamics[J]. Vadose Zone Journal, 2006, 5(4):1143-1153.[6] Grant S, Sletten R. Calculating capillary pressures in frozen and ice-free soils below the melting temperature[J]. Environmental Geology, 2002, 42(2/3):130-136.[7] Cheng Q, Sun Y, Xue X, et al. In situ determination of soil freezing characteristics for estimation of soil moisture characteristics using a dielectric tube sensor[J]. Soil Science Society of America Journal, 2014, 78(1):133-138.[8] Dall'amico M, Endrizzi S, Gruber S, et al. A robust and energy-conserving model of freezing variably-saturated soil[J]. The Cryosphere, 2011, 5(2):469-484.[9] Viterbo P, Beljaars A, Mahfouf J-F, et al. The representation of soil moisture freezing and its impact on the stable boundary layer[J]. Quarterly Journal of the Royal Meteorological Society, 1999, 125(559):2401-2426.[10] Gao Zeyong, Wang Yibo, Liu Guohua, et al. Response of soil moisture within the permafrost active layer to different alpine ecosystems[J]. Journal of Glaciology and Geocryology, 2014, 36(4):1002-1010.[高泽永, 王一博, 刘国华, 等. 多年冻土区活动层土壤水分对不同高寒生态系统的响应[J]. 冰川冻土, 2014, 36(4):1002-1010.][11] Liu Weibo, Yu Wenbing, Chen Lin, et al. Techniques of airport runway construction in permafrost regions:a review[J]. Journal of Glaciology and Geocryology, 2015, 37(6):1599-1610.[刘伟博, 喻文兵, 陈琳, 等. 多年冻土地区机场跑道修筑技术现状[J]. 冰川冻土, 2015, 37(6):1599-1610.][12] Razbegin V N, Vyalov S S, Maksimyak R V, et al. Mechanical properties of frozen soils[J]. Soil Mechanics and Foundation Engineering, 1996, 33(2):35-45.[13] Qiu Guoqing, Liu Jingren, Liu Hongxu. Geocryological glossary[M]. Lanzhou:Gansu Science & Technology Press, 1994.[邱国庆, 刘经仁, 刘鸿绪. 冻土学辞典[M]. 兰州:甘肃科学技术出版社, 1994.][14] Xu Xiaozu, Wang Jiacheng, Zhang Lixin. Frozen soil physics[M]. 2nd ed. Beijing:Science Press, 2010.[徐敩祖, 王家澄, 张立新. 冻土物理学[M]. 2版. 北京:科学出版社, 2010.][15] Jiao Yongliang, Li Ren, Zhao Lin, et al. Processes of soil thawing-freezing and features of soil moisture migration in the permafrost active layer[J]. Journal of Glaciology and Geocryology, 2014, 36(2):237-247.[焦永亮, 李韧, 赵林, 等. 多年冻土区活动层冻融状况及土壤水分运移特征[J]. 冰川冻土, 2014, 36(2):237-247.][16] Fredlund D G. Use of soil-water characteristic curves in the implementation of unsaturated soil mechanics[C]//Proceedings of the 3rd International Conference on Unsaturated Soils, Recife, Brazil, 2002.[17] Fredlund D G, Xing A. Equations for the soil-water characteristic curve[J]. Canadian Geotechnical Journal, 1994, 31(4):521-532.[18] Bouycous G J. Degree of temperature to which soils can be cooled without freezing[J]. Journal of Agricultural Research, 1920, 20:267-269.[19] Richards L A, Campbell R B, Healton L H. Some freezing point depression measurements on cores of soil in which cotton and sunflower plants were wilted[J]. Proceedings of Soil Science Society of America, 1950, 14(C):47-50.[20] Schofield R K, Costa J V B D. Measurement of pF in soil by freezing-point[J]. Journal of Agricultural Science, 1938, 18:644-653.[21] Zhou X, Zhou J, Kinzelbach W, et al. Simultaneous measurement of unfrozen water content and ice content in frozen soil using Gamma ray attenuation and TDR[J]. Water Resources Research, 2014, 50(12):9630-9655.[22] Williams P J. Unfrozen water content of frozen soils and soil moisture suction[J]. Géotechnique, 1964, 14(3):231-246.[23] Dillon H B, Andersland O B. Predicting unfrozen water contents in frozen soils[J]. Canadian Geotechnical Journal, 1966, 3(2):53-60.[24] Anderson D M, Tice A R. Predicting unfrozen water contents in frozen soils from surface area measurements[M]//Frost action in soils. Washington D.C.:National Academy of Sciences, 1972:12-18.[25] Anderson D M, Tice A R, Mckim H L. The unfrozen water and the apparent specific heat capacity of frozen soil[M]//Proceeding of 2nd International Conference on Permafrost, Yakutsk, USSR, 1973:289-295.[26] Xu X, Oliphant J L, Tice A R. Soil-water potential and unfrozen water content and temperature[J]. Journal of Glaciology and Geocryology, 1985, 7(1):1-14.[27] Michalowski R L. A constitutive model of saturated soils for frost heave simulations[J]. Cold Regions Science and Technology, 1993, 22(1):47-63.[28] Michalowski R L, Zhu M. Frost heave modelling using porosity rate function[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2006, 30(8):703-722.[29] Anderson D M, Tice A R. The unfrozen interfacial phase in frozen soil water systems[M]//Physical aspects of soil water and salts in ecosystems. Berlin:Springer, 1973:107-124.[30] Kozlowski T, Nartowska E. Unfrozen water content in representative bentonites of different origin subjected to cyclic freezing and thawing[J]. Vadose Zone Journal, 2013, 12(1). DOI:10.2136/vzj2012.0057.[31] Kozlowski T. A semi-empirical model for phase composition of water in clay-water systems[J]. Cold Regions Science and Technology, 2007, 49(3):226-236.[32] Ma Wei, Wang Dayan. Mechanics of frozen soils[M]. Beijing:Science Press, 2015.[马巍, 王大雁. 冻土力学[M]. 北京:科学出版社, 2015.][33] Suzuki S. Dependence of unfrozen water content in unsaturated frozen clay soil on initial soil moisture content[J]. Soil Science and Plant Nutrition, 2004, 50(4):603-606.[34] Xu Xiaozu, Oliphant J L, Tice A R. Factors affecting water migration in frozen soils, CRREL report 87-9[R]. Hanover, NH:US Army CRREL, 1987.[35] Watanabe K, Mizoguchi M. Amount of unfrozen water in frozen porous media saturated with solution[J]. Cold Regions Science and Technology, 2002, 34(2):103-110.[36] Banin A, Anderson D M. Effects of salt concentration changes during freezing on the unfrozen water content of porous materials[J]. Water Resources Research, 1974, 10(1):124-128.[37] Bing Hui, Ma Wei. Laboratory investigation of the freezing point of saline soil[J]. Cold Regions Science and Technology, 2011, 67(1/2):79-88.[38] Yong R N, Cheung C H, Sheeran D E. Prediction of salt influence on unfrozen water content in frozen soils[J]. Engineering Geology, 1979, 13(1/2/3/4):137-155.[39] Zhang Lixin, Xu Xiaozu, Tao Zhaoxiang, et al. Analysis of the secondary phase transition of sodium chloride solution in freezing soil[C]//Proceeding of 6th International Conference on Permafrost. Guangzhou:South China University of Technology, 1993:773-776.[40] Bing Hui, Ma Wei. Experimental study on freezing point of saline soil[J]. Journal of Glaciology and Geocryology, 2011, 33(5):1106-1113.[41] Wan X, Lai Y. Experimental study on freezing temperature and salt crystal precipitation of sodium sulphate solution and sodium sulphate saline soil[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(11):2090-2096.[42] Wan X, Lai Y, Wang C. Experimental study on the freezing temperatures of saline silty soils[J]. Permafrost and Periglacial Processes, 2015, 26(2):175-187.[43] Berggren W P. Prediction of temperature-distribution in frozen soils[J]. Eos, Transactions American Geophysical Union, 1943, 24(3):71-77[44] Ferguson H, Brown P L, Dickey D D. Water movement and loss under frozen soil conditions[J]. Soil Science Society of American Journal, 1964, 28(5):700-703.[45] Hoekstra P. Moisture movement in soils under temperature gradients with the cold-side temperature below freezing[J]. Water Resources Research, 1966, 2(2):241-250.[46] Dirksen C, Miller R D. Closed-system freezing of unsaturated soil[J]. Soil Science Society of American Journal, 1966, 30(2):168-173.[47] Xu X, Wang J, Zhang L, et al. Mechanism of frost heave by film water migration under temperature gradient[J]. Chinese Science Bulletin, 1997, 42(15):1290-1294.[48] Li S, Lai Y, Pei W, et al. Moisture-temperature changes and freeze-thaw hazards on a canal in seasonally frozen regions[J]. Natural Hazards, 2014, 72(2):287-308.[49] Palmer A C. Ice lensing, thermal diffusion and water migration in freezing soil[J]. Journal of Glaciology, 1967, 6(47):681-694.[50] Harlan R L. Analysis of coupled heat-fluid transport in partially frozen soil[J]. Water Resources Research, 1973, 9(5):1314-1323.[51] Taylor G S, Luthin J N. A model for coupled heat and moisture transfer during soil freezing[J]. Canadian Geotechnical Journal, 1978, 15(4):548-555.[52] Jame Y-W, Norum D I. Heat and mass transfer in a freezing unsaturated porous medium[J]. Water Resources Research, 1980, 16(4):811-819.[53] Pikul J L, Rickman R W, Boersma L. Temperature and water profiles during diurnal soil freezing and thawing:field measurements and simulation[J]. Soil Science Society of America Journal, 1989, 53(1):3-10.[54] An Weidong. The interaction of the temperature, moisture and stress of frozen soil[M]. Lanzhou:Lanzhou University Press, 1989.[安维东. 冻土的温度水分应力及其相互作用[M]. 兰州:兰州大学出版社, 1989.][55] Zeng Guijun, Zhang Mingyi, Li Zhenping, et al. Review of mechanical criterion for formation of ice lens in freezing soil[J]. Journal of Glaciology and Geocryology, 2015, 37(1):192-201.[曾桂军, 张明义, 李振萍, 等. 正冻土中冰透镜体形成力学判据的分析讨论[J]. 冰川冻土, 2015, 37(1):192-201.][56] Konrad J-M, Morgenstern N R. A mechanistic theory of ice lens formation in fine-grained soils[J]. Canadian Geotechnical Journal, 1980, 17(4):473-486.[57] Konrad J-M, Morgenstern N R. The segregation potential of a freezing soil[J]. Canadian Geotechnical Journal, 1981, 18(4):482-491.[58] Sheng Yu, Ma Wei, Hou Zhongjie. A model of migration potential for moisture migration during soil freezing[J]. Journal of Glaciology and Geocryology, 1993, 15(1):140-143.[盛煜, 马巍, 侯仲杰. 正冻土中水分迁移的迁移势模型[J]. 冰川冻土, 1993, 15(1):140-143.][59] Xu Xiaozu, Oliphant J L, Tice A R. Water migration in unsaturated frozen Morin clay under linear temperature gradients[J]. Journal of Glaciology and Geocryology, 1985, 7(2):111-122.[徐敩祖, Oliphant J L, Tice A R. 线性温度梯度下非饱和冻结莫岭黏土中的水分迁移[J]. 冰川冻土, 1985, 7(2):111-122.][60] Thomas H R, Cleall P, Li Y C, et al. Modelling of cryogenic processes in permafrost and seasonally frozen soils[J]. Géotechnique, 2009, 59(3):173-184.[61] Geng G Q, Mehuys G R, Prasher S O. Predicting heat and water flow in a freezing/thawing soil with NMOL[J]. Canadian Water Resources Journal, 1996, 21(1):69-80.[62] Shoop S A, Bigl S R. Moisture migration during freeze and thaw of unsaturated soils:modeling and large scale experiments[J]. Cold Regions Science and Technology, 1997, 25(1):33-45.[63] Painter S L. Three-phase numerical model of water migration in partially frozen geological media:model formulation, validation, and applications[J]. Computational Geosciences, 2010, 15(1):69-85.[64] Zhou J, Wei C, Li D, et al. A moving-pump model for water migration in unsaturated freezing soil[J]. Cold Regions Science and Technology, 2014, 104(3):14-22.[65] Lai Y, Pei W, Zhang M, et al. Study on theory model of hydro-thermal-mechanical interaction process in saturated freezing silty soil[J]. International Journal of Heat and Mass Transfer, 2014, 78(5):805-819.[66] Solomatin V I, Xu X. Water migration and ice segregation in the transition zone between thawed and frozen soil[J]. Permafrost and Periglacial Processes, 1994, 5(3):185-190.[67] Nagare R M, Schincariol R A, Quinton W L, et al. Effects of freezing on soil temperature, freezing front propagation and moisture redistribution in peat:laboratory investigations[J]. Hydrology and Earth System Sciences, 2012, 16(2):501-515.[68] Guan Hui, Wang Dayan, Gu Tongxin, et al. Development and application of a new soil freezing-thawing test apparatus for high loading conditions[J]. Journal of Glaciology and Geocryology, 2014, 36(6):1496-1501.[关辉, 王大雁, 顾同欣, 等. 高压条件下土的冻融试验装置研制及应用[J]. 冰川冻土, 2014, 36(6):1496-1501.][69] Cary J W, Mayland H F. Salt and water movement in unsaturated frozen soil[J]. Soil Science Society of America Journal, 1972, 36(4):549-555.[70] Yong R N, Sheeran D E, Janiga P V. Salt migration and frost heaving of salt treated soils in view of freezing and thawing[C]//The Symposium on Frost Action on Roads, Oslo, Norway, 1973:439-450.[71] Zhang Ying, Bing Hui. Study of the physical and mechanical properties of saline frozen soil:research status and progress[J]. Journal of Glaciology and Geocryology, 2013, 35(6):1527-1535.[张英, 邴慧. 含盐冻土物理力学性质研究现状与进展[J]. 冰川冻土, 2013, 35(6):1527-1535.][72] Vasil'ev V I, Maksimov A M, Petrov E E, et al. Mathematical model of the freezing-thawing of saline frozen soil[J]. Applied Mechanics and Technical Physics, 1995, 36(5):689-696.[73] Brouchkov A. Salt and water transfer in frozen soils induced by gradients of temperature and salt content[J]. Permafrost and Periglacial Processes, 2000, 11(2):153-160.[74] Bing H, He P, Zhang Y. Cyclic freeze-thaw as a mechanism for water and salt migration in soil[J]. Environmental Earth Sciences, 2015, 74(1):675-681.[75] Fabbri A, Fen-Chong T, Azouni A, et al. Investigation of water to ice phase change in porous media by ultrasonic and dielectric measurements[J]. Journal of Cold Regions Engineering, 2009, 23(2):69-90.[76] Zhang Lianhai, Ma Wei, Yang Chengsong, et al. A review and prospect of the thermodynamics of soils subjected to freezing and thawing[J]. Journal of Glaciology and Geocryology, 2013, 35(6):1505-1518.[张莲海, 马巍, 杨成松, 等. 土在冻结及融化过程中的热力学研究现状与展望[J]. 冰川冻土, 2013, 35(6):1505-1518.][77] Kumai M. Electron microscope investigations of frozen and unfrozen bentonite, CRREL report 79-28[R]. Hanover, NH:US Army CRREL, 1979.[78] Shi B, Wu Z, Inyang H, et al. Preparation of soil specimens for SEM analysis using freeze-cut-drying[J]. Bulletin of Engineering Geology and the Environment, 1999, 58(1):1-7.[79] Leng Yifei, Zhang Xifa, Yang Fengxue, et al. Experimental research on unfrozen water content of frozen soils by calorimetry[J]. Rock and Soil Mechanics, 2010, 31(12):3758-3764.[冷毅飞, 张喜发, 杨凤学, 等. 冻土未冻水含量的量热法试验研究[J]. 岩土力学, 2010, 31(12):3758-3764.][80] Brown S C, Payne D. Frost action in clay soils I:a temperature-step and equilibrate differential scanning calorimeter technique for unfrozen water content determinations below 0℃[J]. Journal of Soil Science, 1990, 41(4):535-546.[81] Topp G C, Davis J L, Annan A P. Electromagnetic determination of soil water content:measurements in coaxial transmission lines[J]. Water Resources Research, 1980, 16(3):574-582.[82] Patterson D E, Smith M W. The measurement of unfrozen water content by time domain reflectometry:results from laboratory tests[J]. Canadian Geotechnical Journal, 1981, 18(1):131-144.[83] Hayhoe H N, Topp G C, Bailey W G. Measurement of soil water contents and frozen soil depth during a thaw using time domain reflectometry[J]. Atmosphere Ocean, 1983, 21(3):299-311.[84] Jones S B, Wraith J M, Or D. Time domain reflectometry measurement principles and applications[J]. Hydrological Processes, 2002, 16(1):141-153.[85] Wang Shaoling, Yang Meixue. Application of time-domain-reflectometer to researching moisture variation in active layer on the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2000, 22(1):78-84.[王绍令, 杨梅学. 时域反射仪在监测青藏高原活动层水分变化过程中的应用[J]. 冰川冻土, 2000, 22(1):78-84.][86] Wang Guoshang, Lin Qing. Application of time domain reflectometry (TDR) to determine parameters of frozen-unfrozen soils in cold regions[J]. Journal of Glaciology and Geocryology, 1998, 22(1):88-92.[王国尚, 林清. 时域反射仪在寒区冻融土参数测试中的应用[J]. 冰川冻土, 1998, 22(1):88-92.][87] Watanabe K, Wake T. Measurement of unfrozen water content and relative permittivity of frozen unsaturated soil using NMR and TDR[J]. Cold Regions Science and Technology, 2009, 59(1):34-41.[88] Tice A R, Anderson D M, Sterrett K F. Unfrozen water contents of submarine permafrost determined by nuclear magnetic resonance[J]. Engineering Geology, 1981, 18(1/2/3/4):135-146.[89] Tian Huihui, Wei Changfu. A NMR-based testing and analysis of adsorbed water content[J]. Science China:Technology Science, 2014, 44(3):295-305.[田慧会, 韦昌富. 基于核磁共振技术的土体吸附水含量测试与分析[J]. 中国科学:技术科学, 2014, 44(3):295-305.][90] Sparrman T, Quist M, Klemedtsson L, et al. Quantifying unfrozen water in frozen soil by high-field 2h NMR[J]. Environmental Science & Technology, 2004, 38(20):5420-5425.[91] Akagawa S, Iwahana G, Watanabe K, et al. Improvement of pulse-NMR technology for determining the unfrozen water content in frozen soils[C]//Proceedings of the 10th International Conference on Permafrost, Salekhard, Russia, 2012.[92] Wang Lulu, Chen Xiaofei, Ma Wei, et al. Experimental study of the freezing and thawing characteristic curves of different soils[J]. Journal of Glaciology and Geocryology, 2007, 29(6):1004-1011.[王璐璐, 陈晓飞, 马巍, 等. 不同土壤冻融特征曲线的试验研究[J]. 冰川冻土, 2007, 29(6):1004-1011.][93] Li Dongyang, Liu Bo, Liu Nian, et al. A method to save the determining time of unfrozen water within frozen soil by nuclear magnetic resonance[J]. Journal of Glaciology and Geocryology, 2014, 36(6):1502-1507.[李东阳, 刘波, 刘念, 等. 缩短核磁共振测定冻土未冻水含量实验时间的方法[J]. 冰川冻土, 2014, 36(6):1502-1507.][94] Lin C-P, Chung C-C, Huisman J A, et al. Clarification and calibration of reflection coefficient for electrical conductivity measurement by time domain reflectometry[J]. Soil Science Society of America Journal, 2008, 72(4):1033-1040.[95] Huisman J A, Lin C P, Weihermüller L, et al. Accuracy of bulk electrical conductivity measurements with time domain reflectometry[J]. Vadose Zone Journal, 2008, 7(2):426-433.[96] Minet J, Lambot S, Delaide G, et al. A generalized frequency domain reflectometry modeling technique for soil electrical properties determination[J]. Vadose Zone Journal, 2010, 9(4). DOI:10.2136/vzj2010.0004.[97] Tsheko R, Savage M. Calibration of a frequency-domain reflectometer for determining soil-water content in a clay loam soil[J]. Water SA, 2005, 32(1):37-42.[98] Sheng Yu, Peng Wanwei, Fukuda M. Approach to the application of ultrasonic technology to measuring physical properties of frozen soils[J]. Journal of Glaciology and Geocryology, 2001, 23(4):432-435.[盛煜, 彭万巍, 福田正己. 超声波技术在冻土物性测试中的应用探讨[J]. 冰川冻土, 2001, 23(4):432-435.][99] Liu Hui, Yang Gengshe, Ye Wanjun, et al. Analysis of unfrozen water content and damage characteristics based on histogram technique of CT images[J]. Journal of Glaciology and Geocryology, 2015, 37(6):1591-1598.[刘慧, 杨更社, 叶万军, 等. 基于CT图像直方图技术的冻结岩石未冻水含量及损伤特性分析[J]. 冰川冻土, 2015, 37(6):1591-1598.][100] Corey A T, Klute A. Application of the potential concept to soil water equilibrium and transport[J]. Soil Science Society of American Journal, 1985, 49(1):3-11.[101] Campbell G S. Soil water potential measurement:an overview[J]. Irrigation Science, 1988, 9(4):265-273.[102] Iwata S. Driving force for water migration in frozen clayey soil[J]. Soil Science and Plant Nutrition, 1980, 26(2):215-227.[103] Schofield R K. The pF of water in soil[C]//Transactions of the 3rd International Congress on Soil Science. Oxford, UK:[s.n.], 1935:37-48.[104] Edlefsen N E, Anderson A B C. Thermodynamics of soil moisture[J]. Hilgardia, 1943, 15(2):31-298.[105] Miyata Y, Akagawa S. An experimental study of dynamic solid-liquid phase equilibrium in a porous medium[J]. JSME International Journal, 1998, 41(3):590-600.[106] Mizoguchi M. A derivation of matric potential in frozen soil[D]. Tsu, Japan:Mie University, 1993.[107] Black P B. Applications of the Clapeyron equation to water and ice in porous media, CRREL report 95-6[R]. Hanover, NH:US Army CRREL, 1995.[108] Miyata Y, Akagawa S. An experimental study on static solid-liquid phase equilibrium in the pores of a porous medium[J]. Heat Transfer:Japanese Research, 1997, 26(2):69-83.[109] Biermans M B G M, Dijkema K M, De Vries D A. Water movement in porous media towards an ice front[J]. Journal of Hydrology, 1978, 37(1/2):137-148.[110] Zhang Lixin, Xu Xuezu, Zhang Zhaoxiang, et al. Experimental study of the relationship between the unfrozen water content of frozen soil and pressure[J]. Journal of Glaciology and Geocryology, 1998, 20(2):124-127.[张立新, 徐学祖, 张招祥, 等. 冻土未冻水含量与压力关系的实验研究[J]. 冰川冻土, 1998, 20(2):124-127.][111] Miller R D. The porous phase barrier and crystallization[J]. Separation Science, 1973, 8(5):521-535.[112] Groenevelt P H, Kay B D. Water and ice potentials in frozen soils[J]. Water Resources Research, 1977, 13(2):445-449.[113] Liu Z, Yu X. Coupled thermo-hydro-mechanical model for porous materials under frost action:theory and implementation[J]. Acta Geotechnica, 2011, 6(2):51-65.[114] Zhou J, Li D. Numerical analysis of coupled water, heat and stress in saturated freezing soil[J]. Cold Regions Science and Technology, 2012, 72:43-49.[115] Konrad J M, Duquennoi C. A model for water transport and ice lensing in freezing soils[J]. Water Resources Research, 1993, 29(9):3109-3124.[116] Zhang L, Ma W, Yang C, et al. Investigation of the pore water pressures of coarse-grained sandy soil during open-system step-freezing and thawing tests[J]. Engineering Geology, 2014, 181:233-248.[117] Ma W, Zhang L, Yang C. Discussion of the applicability of the generalized Clausius-Clapeyron equation and the frozen fringe process[J]. Earth-Science Reviews, 2015, 142:47-59.[118] Lu N, Likos W J. Unsaturated soil mechanics[M]. New York:Wiley, 2004.[119] Whalley W R, Ober E S, Jenkins M. Measurement of the matric potential of soil water in the rhizosphere[J]. Journal of Experimental Botany, 2013, 64(13):3951-3963.[120] Li Mingyong, Wu Qingbai, Liu Yongzhi. Monitoring the soil heat-moisture processes within an embankment in Qinghai-Tibet Railway[J]. Journal of Glaciology and Geocryology, 2011, 33(3):546-550.[李明永, 吴青柏, 刘永智. 青藏铁路路基下部土体水热过程变化的监测研究[J]. 冰川冻土, 2011, 33(3):546-550.][121] Wen Zhi, Ma Wei, Xue Ke, et al. Study on moisture migration in frozen soil by soil matric potential sensor[J]. Chinese Journal of Soil Science, 2014, 45(2):370-375.[温智, 马巍, 薛珂, 等. 基于pF meter基质势传感器的冻土水分迁移研究[J]. 土壤通报, 2014, 45(2):370-375.][122] Azmatch T F, Sego D C, Arenson L U, et al. Using soil freezing characteristic curve to estimate the hydraulic conductivity function of partially frozen soils[J]. Cold Regions Science and Technology, 2012, 83/84:103-109.[123] Azmatch T F, Sego D C, Arenson L U, et al. New ice lens initiation condition for frost heave in fine-grained soils[J]. Cold Regions Science and Technology, 2012, 82(15):8-13.[124] Flerchinger G N, Seyfried M S, Hardegree S P. Estimation of the soil moisture characteristic curve from the soil freezing characteristic[C]//2004 ASAE/CSAE Annual International Meeting, Ontario, Canada; ASAE/CSAE, 2004:1-13.[125] Endrizzi S, Rigon R, Dallamico M. A soil freeze/thaw model through the soil water characteristic curve[C]//Proceedings of 9th International Conference on Permafrost, Fairbanks, Alaska, 2008:69-70.[126] van Genuchten M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1980, 44(5):892-898.[127] Watanabe K, Flury M. Capillary bundle model of hydraulic conductivity for frozen soil[J]. Water Resources Research, 2008, 44(12):1-9.[128] Lebeau M, Konrad J-M. An extension of the capillary and thin film flow model for predicting the hydraulic conductivity of air-free frozen porous media[J]. Water Resources Research, 2012, 48(7):2515-2521.[129] Wen Z, Ma W, Feng W, et al. Experimental study on unfrozen water content and soil matric potential of Qinghai-Tibetan silty clay[J]. Environmental Earth Sciences, 2011, 66(5):1467-1476.[130] Kelleners T J, Norto J B. Determining water retention in seasonally frozen soils using hydra impedance sensors[J]. Soil Science Society of America Journal, 2012, 76(1):36-50.[131] Naasz R, Michel J-C, Charpentier S. Measuring hysteretic hydraulic properties of peat and pine bark using a transient method[J]. Soil Science Society of America Journal, 2005, 69(1):13-22.[132] Nam S, Gutierrez M, Diplas P, et al. Comparison of testing techniques and models for establishing the SWCC of riverbank soils[J]. Engineering Geology, 2010, 110(1/2):1-10.[133] Ishizaki T, Maruyama M, Furukawa Y, et al. Premelting of ice in porous silica glass[J]. Journal of Crystal Growth, 1996, 163(4):455-460.[134] Jähnert S, Vaca Chávez F, Schaumann G E, et al. Melting and freezing of water in cylindrical silica nanopores[J]. Physical Chemistry Chemical Physics, 2008, 10(39):6039-6051.[135] Tian H, Wei C, Wei H, et al. Freezing and thawing characteristics of frozen soils:bound water content and hysteresis phenomenon[J]. Cold Regions Science and Technology, 2014, 103:74-81.[136] Suzuki E-I, Nagashima N. Freezing-thawing hysteresis phenomena of biological systems by the new method of proton magnetic resonance[J]. Bulletin of the Chemical Society of Japan, 1982, 55(9):2730-2733.[137] Black P B, Tice A R. Comparison of soil freezing curve and soil water curve data for Windsor sandy loam[J]. Water Resources Research, 1989, 25(10):2205-2210.[138] Coussy O, Fen-Chong T. Crystallization, pore relaxation and micro-cryosuction in cohesive porous materials[J]. Comptes Rendus Mécanique, 2005, 333(6):507-512.[139] McQueen I S, Miller R F. Approximating soil moisture characteristics from limited data:empirical evidence and tentative model[J]. Water Resources Research, 1974, 10(3):521-527. |
[1] | 訾凡, 杨更社, 贾海梁. 饱和度对泥质粉砂岩冻结力学性质的影响[J]. 冰川冻土, 2018, 40(4): 748-755. |
[2] | 李时越, 杨凯, 王澄海. 陆面模式CLM4.5在青藏高原土壤冻融期的偏差特征及其原因[J]. 冰川冻土, 2018, 40(2): 322-334. |
[3] | 朱美壮, 王根绪, 肖瑶, 胡兆永, 宋春林, 黄克威. 青藏高原多年冻土区高寒草甸土壤水分入渗变化研究[J]. 冰川冻土, 2017, 39(6): 1316-1325. |
[4] | 杜耀辉, 杨晓华, 杨延平. 青藏粉质黏土冻融过程水热特征研究[J]. 冰川冻土, 2017, 39(4): 834-841. |
[5] | 杨 成, 姚济敏, 赵 林, 乔永平, 史健宗. 藏北高原多年冻土区地表反照率时空变化特征[J]. 冰川冻土, 2016, 38(6): 1518-1528. |
[6] | 马敏, 邴慧, 李国玉. 硫酸钠盐渍土未冻水含量的实验研究[J]. 冰川冻土, 2016, 38(4): 963-969. |
[7] | 常宗强, 马亚丽, 刘蔚, 冯起, 苏永红, 席海洋, 司建华. 土壤冻融过程对祁连山森林土壤碳氮的影响[J]. 冰川冻土, 2014, 36(1): 200-206. |
[8] | 张英, 邴慧*. 含盐冻土物理力学性质研究现状与进展[J]. 冰川冻土, 2013, 35(6): 1527-1535. |
[9] | 苏凯, 张建明, 刘世伟, 张虎, 阮国锋. 高温-高含冰量冻土压缩变形特性研究[J]. 冰川冻土, 2013, 35(2): 369-375. |
[10] | 张世民, 李双洋. 青藏粉质黏土冻融循环试验研究[J]. 冰川冻土, 2012, 34(3): 625-631. |
[11] | 刘世伟, 张建明. 高温冻土物理力学特性研究现状[J]. 冰川冻土, 2012, 34(1): 120-129. |
[12] | 宋存牛. 冻融过程中土体水热力耦合作用理论和模型研究进展[J]. 冰川冻土, 2010, 32(5): 982-988. |
[13] | 汪仁和;张 瑞;李栋伟. 多圈管冻结壁形成和融化过程冻胀力实测研究 [J]. 冰川冻土, 2010, 32(3): 538-542. |
[14] | 罗斯琼;吕世华;张 宇;胡泽勇;尚伦宇;李锁锁. 青藏高原中部冻土环境下土壤水分监测;[J]. 冰川冻土, 2009, 31(6): 1150-1155. |
[15] | 王 风;韩晓增;李良皓;张克强. 冻融过程对黑土水稳性团聚体含量影响;[J]. 冰川冻土, 2009, 31(5): 915-919. |
|
©2018 冰川冻土编辑部
电话:0931-8260767 E-mail: edjgg@lzb.ac.cn 邮编:730000