[1] Qiu Guoqing, Liu Jingren, Liu Hongxu. Geocryological glossary[M]. Lanzhou:Gansu Science and Technology Press, 1994:164-165.[邱国庆, 刘经仁, 刘鸿绪. 冻土学词典[M]. 兰州:甘肃科学技术出版社, 1994:164-165.] [2] Anisimov O A, Shiklomanov N I, Nelson F E. Global warming and active-layer thickness:results from transient general circulation models[J]. Global and Planetary Change, 1997, 15(3):61-77. [3] Romanovsky V E, Osterkamp T E. Thawing of the active layer on the coastal plain of the Alaskan Arctic[J]. Permafrost and Periglacial Processes, 1997, 8(1):1-22. [4] Hinkel K M, Outcalt S I, Taylor A E. Seasonal patterns of coupled flow in the active layer at three sites in northwest North America[J]. Canadian Journal of Earth Sciences, 1997, 34(5):667-678. [5] Nelson F E, Brown J. Global change and permafrost[J]. Frozen Ground, 1997, 21:21-24. [6] Friborg T, Soegaard H, Christensen T R, et al. Siberian wetlands:where a sink is a source[J]. Geophysical Research Letters, 2003, 30(21):2129-2133. [7] Christensen T R, Johansson T, Akerman H J, et al. Thawing sub-arctic permafrost:effects on vegetation and methane emissions[J]. Geophysical Research Letters, 2004, 31(4):367. [8] Burgess M M, Smith S L, Brown J, et al. Global terrestrial network for permafrost (GTNet-P):permafrost monitoring contributing to global climate observations:current research report 2000-E14[R]. Ottawa, Canada:Geological Survey of Canada, 2000. [9] Brown J, Hinkel K M, Nelson F E. The circumpolar active layer monitoring (CALM) program:research designs and initial results[J]. Polar Geography, 2000, 24(3):166-258. [10] Nelson F E, Shiklomanov N I, Hinkel K M, et al. The circumpolar active layer monitoring (CALM) workshop and the CALM Ⅱ program[J]. Polar Geography, 2004, 28(4):253-266. [11] Tarnocai C, Nixon F M, Kutny L. Circumpolar-active-layer-monitoring (CALM) sites in the Mackenzie valley, northwestern Canada[J]. Permafrost and Periglacial Processes, 2004, 15(2):141-153. [12] Pogliotti P, Guglielmin M, Cremonese E, et al. Warming permafrost and active layer variability at Cime Bianche, western European Alps[J]. The Cryosphere, 2015, 9(2):647-661. [13] Ding Yongjian, Ye Baisheng, Liu Shiyin, et al. Monitoring of frozen soil hydrology in macro-scale in the Qinghai-Xizang Plateau[J]. Chinese Science Bulletin, 2000, 45(12):1143-1149.[丁永建, 叶柏生, 刘时银, 等. 青藏高原大尺度冻土水文监测研究[J]. 科学通报, 2000, 45(2):208-214.] [14] Zhao Lin, Cheng Guodong, Li Shuxun, et al. Thawing and freezing processes of active layer in Wudaoliang region of Tibetan Plateau[J]. Chinese Science Bulletin, 2000, 45(23):2181-2187.[赵林, 程国栋, 李述训, 等. 青藏高原五道梁附近多年冻土活动层冻结和融化过程[J]. 科学通报, 2000, 45(11):1205-1211.] [15] Cremonese E, Gruber S, Phillips M, et al. Brief communication:“an inventory of permafrost evidence for the European Alps”[J]. The Cryosphere, 2011, 5(3):651-657. [16] Yang Chengsong, Cheng Guodong. Probabilistic prediction of the impacts of climate change on permafrost stability along Qinghai-Tibet Railway (Ⅰ):active layer thickness and ground temperature[J]. Journal of Glaciology and Geocryology, 2011, 33(3):461-468.[杨成松, 程国栋. 气候变化条件下青藏铁路沿线多年冻土概率预报(Ⅰ):活动层厚度与地温[J]. 冰川冻土, 2011, 33(3):461-468.] [17] Yang Chengsong, Cheng Guodong. Probabilistic prediction of the impacts of climate change on permafrost stability along Qinghai-Tibet Railway (Ⅱ):active layer thickness and settlement deformation[J]. Journal of Glaciology and Geocryology, 2011, 33(3):469-478.[杨成松, 程国栋. 气候变化条件下青藏铁路沿线多年冻土概率预报(Ⅱ):活动层厚度与沉降变形[J]. 冰川冻土, 2011, 33(3):469-478.] [18] Wang Chunhe. The freezing-thawing action and cold regional construction in Northeast China[M]. Beijing:Science Press, 1999:45-52.[王春鹤. 中国东北冻土融冻作用与寒区开发建设[M]. 北京:科学出版社, 1999:45-52.] [19] Peng Xiaoqing, Frauenfeld O W, Zhang Tingjun, et al. Response of seasonal soil freeze depth to climate change across China[J]. The Cryosphere, 2016, 10(16):1-33. [20] Shiklomanov N I, Streletskiy D A, Nelson F E, et al. Decadal variations of active-layer thickness in moisture-controlled landscapes, Barrow, Alaska[J]. Journal of Geophysical Research:Biogeosciences, 2010, 115(G4):3538-3549. [21] Pang Qiangqiang, Cheng Guodong, Li Shuxun, et al. Active layer thickness calculation over the Qinghai-Tibet Plateau[J]. Cold Regions Science and Technology, 2009, 57(1):23-28. [22] Liang Xiaowen, Yang Meixue, Wan Guoning, et al. Research on the homogeneity of air temperature series over Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2015, 37(2):275-285.[梁小文, 杨梅学, 万国宁, 等. 青藏高原气温序列的均一性研究[J]. 冰川冻土, 2015, 37(2):275-285.] [23] Yun Hanbo, Wu Qingbai, Rui Pengfei, et al. Development of an OTC system with automatic carbon flux observation function in permafrost regions[J]. Journal of Glaciology and Geocryology, 2015, 37(2):454-460.[贠汉伯, 吴青柏, 芮鹏飞, 等. 适用于多年冻土区具有碳通量自动观测性能的OTC系统开发设计[J]. 冰川冻土, 2015, 37(2):454-460.] [24] Liu Minghao, Sun Zhizhong, Niu Fujun, et al. Variation characteristics of the permafrost along the Qinghai-Tibet Railway under the background of climate change[J]. Journal of Glaciology and Geocryology, 2014, 36(5):1122-1130.[刘明浩, 孙志忠, 牛富俊, 等. 气候变化背景下青藏铁路沿线多年冻土变化特征研究[J]. 冰川冻土, 2014, 36(5):1122-1130.] [25] Xu Xiaoming, Zhang Zhongqiong, Wu Qingbai. Simulation of permafrost changes on the Qinghai-Tibet Plateau, China, over the past three decades[J]. International Journal of Digital Earth, 2017, 10(5):522-538. [26] Meehl G A, Stocker T F, Collins W D, et al. Global climate projections[M]//Solomon S, Qin Dahe, Manning M, et al. Climate change 2007:the physical science basis:contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. New York:Cambridge University Press, 2007:747-845. [27] Jones P D, Raper S C B, Bradley R S, et al. Northern hemisphere surface air temperature variations:1851-1984[J]. Journal of Climate and Applied Meteorology, 1986, 25(2):161-179. [28] He Jie. Development of surface meteorological datasets of China with high temporal and spatial resolution[D]. Beijing:Institute of Tibetan Plateau Research, Chinese Academy of Sciences, 2011.[何杰. 中国区域高时空分辨率地面气象要素数据集的建立[D]. 北京:中国科学院青藏高原研究所, 2011.] [29] Guo Donglin, Wang Huijun. Simulation of permafrost and seasonally frozen ground conditions on the Tibetan Plateau, 1981-2010[J]. Journal of Geophysical Research:Atmospheres, 2013, 118(11):5216-5230. [30] Xue Baolin, Wang Lei, Yang Kun, et al. Modeling the land surface water and energy cycles of a mesoscale watershed in the central Tibetan Plateau during summer with a distributed hydrological model[J]. Journal of Geophysical Research:Atmospheres, 2013, 118(16):8857-8868. [31] Zhang Tongzuo, Lin Gonghua, Nevo E, et al. Cytochrome b gene selection of subterranean rodent Gansu zokor Eospalax cansus (Rodentia, Spalacidae)[J]. Zoologischer Anzeiger, 2013, 252(1):118-122. [32] Gao Siru, Wu Qingbai, Zhang Zhongqiong, et al. Impact of climatic factors on permafrost of the Qinghai-Xizang Plateau in the time-frequency domain[J]. Quaternary International, 2015, 374(2):110-117. [33] Ran Youhua, Li Xin, Lu Ling, et al. Large-scale land cover mapping with the integration of multi-source information based on the Dempster-Shafer theory[J]. International Journal of Geographical Information Science, 2012, 26(1):169-191. [34] Wu Qingbai. Study on change of frozen soil environment and engineering suitability under human activities[D]. Lanzhou:Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, 2000:129-131.[吴青柏. 人为活动下冻土环境变化和工程适应性研究[D]. 兰州:中国科学院寒区旱区环境与工程研究所, 2000:129-131.] [35] Zhao Hongyan, Jiang Hao, Wang Keli, et al. The surface thawing-freezing indexes along the Qinghai-Tibet Railway:analysis and calculation[J]. Journal of Glaciology and Geocryology, 2008, 30(4):617-623.[赵红岩, 江灏, 王可丽, 等. 青藏铁路沿线地表融冻指数的计算分析[J]. 冰川冻土, 2008, 30(4):617-623.] [36] Nan Zhuotong. Study on characteristics of permafrost distribution on the Qinghai-Tibet Plateau and construction of digital roadbed of the Qinghai-Tibet Railway[D]. Lanzhou:Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, 2003:34-36.[南卓铜. 青藏高原冻土分布研究及青藏铁路数字路基建设[D]. 兰州:中国科学院寒区旱区环境与工程研究所, 2003:34-36.] [37] Pang Qiangqiang, Li Shuxun, Wu Tonghua, et al. Simulated distribution of active layer depths in the frozen ground regions of Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2006, 28(3):390-395.[庞强强, 李述训, 吴通华, 等. 青藏高原冻土区活动层厚度分布模拟[J]. 冰川冻土, 2006, 28(3):390-395.] [38] Li Jing, Sheng Yu, Wu Jichun, et al. Variations in the ground temperatures of permafrost in the two watersheds of the interior and eastern Qilian Mountains[J]. Environmental Earth Sciences, 2016, 75(6):1-14. [39] Chen Hao, Nan Zhuotong, Zhao Lin, et al. Noah modelling of the permafrost distribution and characteristics in the west Kunlun area, Qinghai-Tibet Plateau, China[J]. Permafrost and Periglacial Processes, 2015, 26(2):160-174. [40] Li Jing, Sheng Yu, Wu Jichun, et al. Modeling regional and local-scale permafrost distribution in Qinghai-Tibet Plateau using equivalent-elevation method[J]. Chinese Geographical Science, 2012, 22(3):278-287. [41] Zhang Zhongqiong, Wu Qingbai. Predicting changes of active layer thickness on the Qinghai-Tibet Plateau as climate warming[J]. Journal of Glaciology and Geocryology, 2012, 34(3):505-511.[张中琼, 吴青柏. 气候变化情景下青藏高原多年冻土活动层厚度变化预测[J]. 冰川冻土, 2012, 34(3):505-511.] |