[1] Sun Yongfu. Permafrost engineering in the Qinghai-Tibet Railway:research and practice[J]. Journal of Glaciology and Geocryology, 2005, 27(2):153-162.[孙永福. 青藏铁路多年冻土工程的研究与实践[J]. 冰川冻土, 2005, 27(2):153-162.] [2] Yu Hui, Wu Qingbai, Liu Yongzhi. The long-term monitoring system on permafrost regions along the Qinghai-Tibet Railway[J]. Journal of Glaciology and Geocryology, 2008, 30(3):475-481.[于晖, 吴青柏, 刘永智. 青藏铁路多年冻土区工程长期监测系统[J]. 冰川冻土, 2008, 30(3):475-481.] [3] Chen Guoyuan, Tang Xiaodi, Wei Limin. Comparative analysis of the settlement distribution for road-bridge transition section of the passenger line[J]. Journal of Central South University of Forestry & Technology, 2008, 28(2):151-155.[陈果元, 唐小弟, 魏丽敏. 客运专线路桥过渡段沉降规律的对比分析[J]. 中南林业科技大学学报, 2008, 28(2):151-155.] [4] Niu Fujun, Lin Zhanju, Lu Jiahao, et al. Study of the influencing factors of roadbed settlement in embankment-bridge transition section along Qinghai-Tibet Railway[J]. Rock and Soil Mechanics, 2011, 32(s2):372-377.[牛富俊, 林占举, 鲁嘉濠, 等. 青藏铁路路桥过渡段沉降变形影响因素分析[J]. 岩石力学与工程学报. 2011, 32(s2):372-377.] [5] Sun Zhizhong, Wu Guilong, Yun Hanbo, et al. Permafrost degradation under embankment of the Qinghai-Tibet Railway in the southern limit of permafrost[J]. Journal of Glaciology and Geocryology, 2014, 36(4):767-771.[孙志忠, 武贵龙, 贠汉伯, 等. 多年冻土南界附近青藏铁路路基下的冻土退化[J]. 冰川冻土, 2014, 36(4):767-771.] [6] Mu Yanhu, Ma Wei, Niu Fujun, et al. Monitoring and analyzing the thermal conditions of traditional embankments along the Qinghai-Tibet Railway[J]. Journal of Glaciology and Geocryology, 2014, 36(4):953-961.[穆彦虎, 马巍, 牛富俊, 等. 青藏铁路多年冻土区普通路基热状况监测分析[J]. 冰川冻土, 2014, 36(4):953-961.] [7] Gao Baolin, Sun Zhizhong, Dong Tianchun, et al. Characteristics of thawed interlayer beneath embankment of the Qinghai-Tibet Railway in permafrost regions and its effect on embankment deformation[J]. Journal of Glaciology and Geocryology, 2015, 37(1):126-131.[高宝林, 孙志忠, 董添春, 等. 青藏铁路路基下融化夹层特征及其对路基沉降变形的影响[J]. 冰川冻土, 2015, 37(1):126-131.] [8] Hou Yandong, Wu Qingbai, Sun Zhizhong, et al. The coupled reinforcing effect to crushed rock slope protection and thermosyphons in Qinghai-Tibet Railway[J]. Journal of Glaciology and Geocryology, 2015, 37(1):118-125.[侯彦东, 吴青柏, 孙志忠, 等. 青藏铁路碎石护坡热管复合措施的补强效果研究[J]. 冰川冻土, 2015, 37(1):118-125.] [9] Chen lin, Yu Wenbin, Han Fenglei, et al. Imapcts of Aeolian sand on cooling effect of crushed-rock embankment of Qinghai-Tibet Railway[J]. Journal of Glaciology and Geocryology, 2015, 37(1):147-155.[陈琳, 俞文兵, 韩风雷, 等. 风积沙对青藏铁路块碎石路基降温效果的影响[J]. 冰川冻土, 2015, 37(1):147-155.] [10] Dong Changhong, Zhao Xiangqing. Analysis on subgrade deformation features and influence factors in permafrost regions on Qinghai-Tibet Railway[J]. Railway Standard Design, 2013(6):5-8.[董昶宏, 赵相卿.青藏铁路多年冻土区路基变形特征及影响因素分析[J]. 铁道标准设计, 2013(6):5-8.] [11] Ma Wei, Mu Yanhu, Wu Qingbai, et al. Characteristics and mechanisms of embankment deformation along the Qinghai-Tibet Railway in permafrost regions[J]. Cold Regions Science and Technology, 2011, 67(3):178-186. [12] Ma Wei, Liu Duan, Wu Qingbai. Monitoring and analysis of embankment deformation in permafrost regions of Qinghai-Tibet Railway[J]. Rock Mechanics, 2008, 29(3):571-580.[马巍, 刘端, 吴青柏. 青藏铁路冻土路基变形监测与分析[J], 岩石力学, 2008, 29(3):571-580.] |