[1] Yang Xingguo, Qin Dahe, Qin Xiang. Progress in the study of interaction between ice/snow and atmosphere[J]. Journal of Glaciology and Geocryology, 2012, 34(2): 392-402. [杨兴国, 秦大河, 秦翔. 冰川/积雪-大气相互作用研究进展[J]. 冰川冻土, 2012, 34(2): 392-402.] [2] Shi Yafeng, Liu Shiyin. Estimation on the response of glaciers in China to the global warming in the 21st century[J]. Chinese Science Bulletin, 2000, 45(7): 668-672. [施雅风, 刘时银. 中国冰川对21世纪全球变暖响应的预估[J]. 科学通报, 2000, 45(4): 434-438.] [3] Paterson W S B. The physics of glaciers [M]. 3rd ed. Oxford Pergamon, 1994: 26-32. [4] Braithwaite R J. Can the mass balance of a glacier be estimated from its equilibrium line altitude[J]. Journal of Glaciology, 1984, 30(106): 364-368. [5] Rabatel A, Bermejo A, Loarte E, et al. Can the snowline be used as an indicator of the equilibrium line and mass balance for glaciers in the outer tropics?[J]. Journal of Glaciology, 2012, 58(212): 1027-1036. [6] Rabatel A, Letreguilly A, Dedieu J P, et al. Changes in glacier equilibrium-line altitude in the western Alps from 1984 to 2010: evaluation by remote sensing and modeling of the morpho-topographic and climate controls[J]. Cryosphere, 2013, 7(5): 1455-1471. [7] Huang Lei, Li Zhen, Tian Bangsen, et al. Classification and snow line detection for glacial areas using the polarimetric SAR image[J]. Remote Sensing of Environment, 2011, 115(7): 1721-1732. [8] Huang Lei, Li Zhen. Comparison of different methods in glacier snow line detection using the polarimetric SAR image[C]//Geoscience and Remote Sensing Symposium (IGARSS), 2012 IEEE International. Ieee, 2012: 4426-4429. [9] Rabatel A, Dedieu J P, Thibert E, et al. 25 years (1981-2005) of equilibrium-line altitude and mass-balance reconstruction on Glacier Blanc, French Alps, using remote-sensing methods and meteorological data[J]. Journal of Glaciology, 2008, 54(185): 307-314. [10] Guo Zhongming, Wang Ninglian, Kehrwald N M, et al. Temporal and spatial changes in Western Himalayan firn line altitudes from 1998 to 2009[J]. Global and Planetary Change, 2014, 118: 97-105. [11] Hall D K, Riggs G A. Accuracy assessment of the MODIS snow products[J]. Hydrological Processes, 2007, 21(12): 1534-1547. [12] Paudel K P, Andersen P. Monitoring snow cover variability in an agropastoral area in the Trans Himalayan region of Nepal using MODIS data with improved cloud removal methodology[J]. Remote Sensing of Environment, 2011, 115(5): 1234-1246. [13] Dietz A J, Kuenzer C, Conrad C. Snow-cover variability in central Asia between 2000 and 2011 derived from improved MODIS daily snow-cover products[J]. International Journal of Remote Sensing, 2013, 34(11): 3879-3902. [14] Tekeli A E, Akyurek Z, Sorman A A, et al. Using MODIS snow cover maps in modeling snowmelt runoff process in the eastern part of Turkey[J]. Remote Sensing of Environment, 2005, 97(2): 216-230. [15] Immerzeel W W, Droogers P, De Jong S M, et al. Large-scale monitoring of snow cover and runoff simulation in Himalayan river basins using remote sensing[J]. Remote Sensing of Environment, 2009, 113(1): 40-49. [16] Konz M, Finger D, Buergi C, et al. Calibration of a distributed hydrological model for simulations of remote glacierized Himalayan catchments using MODIS snow cover data[J]. Global Change: Facing Risks and Threats to Water Resources, 2010, 340: 465-473. [17] Gafurov A, Bárdossy A. Cloud removal methodology from MODIS snow cover product[J]. Hydrology and Earth System Sciences, 2009, 13(7): 1361. [18] Wang Xianmei, Xie Hongjie. New methods for studying the spatiotemporal variation of snow cover based on combination products of MODIS Terra and Aqua[J]. Journal of Hydrology, 2009, 371(1): 192-200. [19] Tang Zhiguang, Wang Jian, Li Hongyi, et al. Accuracy validation and cloud obscuration removal of MODIS fractional snow cover products over Tibetan[J]. Remote Sensing Technology and Application, 2013, 28(3): 423-430. [唐志光, 王建, 李弘毅, 等. 青藏高原MODIS积雪面积比例产品的精度验证与去云研究[J]. 遥感技术与应用, 2013, 28(3): 423-430.] [20] Xie Zichu, Zhou Zaigen, Li Qiaoyuan, et al. Progress and prospects of mass balance characteristic and responding to global change of glacier system in High Asia[J]. Advances in Earth Science, 2009, 24(10): 1065-1072. [谢自楚, 周宰根, 李巧媛, 等. 高亚洲冰川系统物质平衡特征及其对全球变化响应研究进展与展望[J]. 地球科学进展, 2009, 24(10): 1065-1072.] [21] Arendt A, Bliss A, Bolch T, et al. Randolph glacier inventory: a dataset of global glacier outlines: version 5.0[DB/OL]. Boulder Colorado, USA, 2015[2015-07-20]. http://www.glims.org/RGI/index.html. [22] Xie Zichu. High Asia glacier mass balance reaserch[J]. Bulletin of Chinese Academy of Sciences, 1994, 3: 5-248. [谢自楚. 高亚洲冰川物质平衡研究[J]. 中国科学院院刊, 1994, 3: 5-248.] [23] Yao Tandong, Thompson L, Yang Wei, et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings[J]. Nature Climate Change, 2012, 2(9): 663-667. [24] Xie Zichu,Ding Liangfu. Glacier mass balance in High-Asia and its response to climatic change[J]. Journal of Glaciology and Geocryology, 1996, 18(S1): 4-11. [谢自楚, 丁良福. 高亚洲冰川物质平衡及其对气候变化的响应研究[J]. 冰川冻土, 1996, 18(S1): 4-11.] [25] Sakai A, Nuimura T, Fujita K, et al. Climate regime of Asian glaciers revealed by GAMDAM glacier inventory[J]. Cryosphere, 2015, 9(3): 865-880. [26] Liu Shiyin, Ding Yongjian, Ye Baisheng, et al. Regional characteristics of glacier mass balance variations in High Asia[J]. Journal of Glaciology and Geocryology, 2000, 22(2): 97-105. [刘时银, 丁永建, 叶佰生, et al. 高亚洲地区冰川物质平衡变化特征研究[J]. 冰川冻土, 2000, 22(2): 97-105.] [27] Yao Tandong, Liu Shiyin, Pu Jianchen, et al. Recent glacial retreat in High Asia in China and its impact on water resource in Northwest China[J]. Science in China: Series D Earth Sciences, 2004, 47(12): 1065-1075.. [姚檀栋, 刘时银, 蒲健辰, 等. 高亚洲冰川的近期退缩及其对西北水资源的影响[J]. 中国科学: D辑 地球科学, 2004, 34(6): 535-543.] [28] Bolch T, Kulkarni A, Kaab A, et al. The State and Fate of Himalayan Glaciers[J]. Science, 2012, 336(6079): 310-314. [29] Gardner A S, Moholdt G, Cogley J G, et al. A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009[J]. science, 2013, 340(6134): 852-857. [30] Gardelle J, Berthier E, Arnaud Y, et al. Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999-2011[J]. Cryosphere, 2013, 7(4): 1263-1286. [31] WGMS. Fluctuations of glaciers database[EB/OL]. Zurich, Switzerland: World Glacier Monitoring Service (WGMS), 2016[2015-08-31]. http://dx.doi.org/10.5904/wgms-fog-2016-08. [32] Hall D K, Riggs G A, Salomonson V V. Development of methods for mapping global snow cover using moderate resolution imaging spectroradiometer data[J]. Remote sensing of Environment, 1995, 54(2): 127-140. [33] Hall D K, Riggs G A, Salomonson V V, et al. MODIS snow-cover products[J]. Remote Sensing of Environment, 2002, 83(1/2): 181-194. [34] Ault T W, Czajkowski K P, Benko T, et al. Validation of the MODIS snow product and cloud mask using student and NWS cooperative station observations in the Lower Great Lakes Region[J]. Remote Sensing of Environment, 2006, 105(4): 341-353. [35] Wang Xianwei, Xie Hongjie, Liang Tiangang, et al. Comparison and validation of MODIS standard and new combination of Terra and Aqua snow cover products in northern Xinjiang, China[J]. Hydrological Processes, 2009, 23(3): 419-429. [36] Salomonson V V, Appel I. Estimating fractional snow cover from MODIS using the normalized difference snow index[J]. Remote Sensing of Environment, 2004, 89(3): 351-360. [37] Salomonson V V, Appel I. Development of the Aqua MODIS NDSI fractional snow cover algorithm and validation results[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(7): 1747-1756. [38] Rittger K, Painter T H, Dozier J. Assessment of methods for mapping snow cover from MODIS[J]. Advances in Water Resources, 2013, 51: 367-380. [39] Nuimura T, Sakai A, Taniguchi K, et al. The GAMDAM glacier inventory: a quality-controlled inventory of Asian glaciers[J]. The Cryosphere, 2015, 9(3): 849-864. [40] Guo Wanqin, Liu Shiyin, Yao Xiaojun, et al. The second glacier inventory dataset of China (Version 1.0)[J]. Lanzhou: Cold and Arid Regions Science Data Center at Lanzhou, China, 2014. DOI: 10.3972/glacier.001.2013.db. [41] Liu Shiyin, Yao Xiaojun, Guo Wangqin, et al. The contemporary glaciers in China based on the Second Chinese Glacier Inventory[J]. Progress in Geography, 2015, 70(1): 3-16. [刘时银, 姚晓军, 郭万钦, 等. 基于第二次冰川编目的中国冰川现状[J]. 地理学报, 2015, 70(1): 3-16.] [42] Sun G, Ranson K, Kharuk V, et al. Validation of surface height from shuttle radar topography mission using shuttle laser altimeter[J]. Remote Sensing of Environment, 2003, 88(4): 401-411. [43] Moelg T, Maussion F, Scherer D. Mid-latitude westerlies as a driver of glacier variability in monsoonal High Asia[J]. Nature Climate Change, 2014, 4(1): 68-73. [44] Maussion F, Scherer D, Moelg T, et al. Precipitation seasonality and variability over the Tibetan Plateau as resolved by the High Asia reanalysis[J]. Journal of Climate, 2014, 27(5): 1910-1927. [45] Mölg T, Maussion F, Scherer D. Mid-latitude westerlies as a driver of glacier variability in monsoonal High Asia[J]. Nature Climate Change, 2013, 4(1): 68-73. [46] Molg T, Maussion F, Yang W, et al. The footprint of Asian monsoon dynamics in the mass and energy balance of a Tibetan glacier[J]. Cryosphere, 2012, 6(6): 1445-1461. [47] Tang Zhiguang, Wang Jian, Ling Ji, et al. Monitoring of snowline altitude over the Tibetan Plateau based on MODIS data[J]. Remote Sensing Technology and Application, 2015, 30(4): 767-744. [唐志光, 王建, 梁继, 等. 基于MODIS的青藏高原雪线高度遥感监测[J]. 遥感技术与应用, 2015, 30(4): 767-774.] [48] Liu Chaohai, Shi Yafeng, Wang Zongtai, et al. Glacier resources and their distributive characteristics in China: a review on Chinese Glacier Inventory[J]. Journal of Glaciology and Geocryology, 2000, 22(2): 106-112. [刘潮海, 施雅风, 王宗太, 等. 中国冰川资源及其分布特征: 中国冰川目录编制完成[J]. 冰川冻土, 2000, 22(2): 106-112.] [49] Li Zhongqin, Shen Yongping, Wang Feiteng, et al. Response of glacier melting to climate change: take Vrümqi Glacier No.1 as an example[J]. Journal of Glaciology and Geocryology, 2007, 29(3): 5-14. [李忠勤, 沈永平, 王飞腾, 等. 冰川消融对气候变化的响应: 以乌鲁木齐河源1号冰川为例[J]. 冰川冻土, 2007, 29(3): 5-14.] [50] Liu Shiyin, Ding Yongjian, Wang Ninglian, et al. Mass balance sensitivity to climate change of Glacier No.1 at the Ürümqi River head, Tianshan Mts.[J]. Journal of Glaciology and Geocryology, 1998, 20(1): 9-13. [刘时银, 丁永建, 王宁练, 等. 天山乌鲁木齐河源1号冰川物质平衡对气候变化的敏感性研究[J]. 冰川冻土, 1998, 20(1): 9-13.] [51] Wagnon P, Vincent C, Arnaud Y, et al. Seasonal and annual mass balances of Mera and Pokalde glaciers (Nepal Himalaya) since 2007[J]. Cryosphere, 2013, 7(6): 1769-1786. [52] Dobhal D P, Mehta M, Srivastava D. Influence of debris cover on terminus retreat and mass changes of Chorabari Glacier, Garhwal region, central Himalaya, India[J]. Journal of Glaciology, 2013, 59(217): 961-971. [53] Hewitt K. The Karakoram anomaly? Glacier expansion and the‘elevation effect,’ Karakoram Himalaya[J]. Mountain Research and Development, 2005, 25(4): 332-340. |