[1] Wang Hao, Yan Denghua, Jia Yangwen, et al. Subject system of modern hydrology and water resources and research frontiers and hot issues [J]. Advances in Water Science, 2010, 21(4): 479-489. [王浩, 严登华, 贾仰文, 等. 现代水文水资源学科体系及研究前沿和热点问题[J]. 水科学进展, 2010, 21(4): 479-489.] [2] Sang Xuefeng, Zhou Zuhao, Qin Dayong, et al. Application of improved SWAT model to area with strong human activities[J]. Journal of Hydraulic Engineering, 2008, 39(12): 1377-1383, 1389. [桑学锋, 周祖昊, 秦大庸, 等. 改进的SWAT模型在强人类活动地区的应用[J]. 水利学报, 2008, 39(12): 1377-1383, 1389.] [3] Xia Jun, Wang Gangsheng, Lü Aifeng, et al. A research on distributed time variant gain modeling[J]. Journal of Geographical Sciences, 2003, 58(5): 789-796. [夏军, 王纲胜, 吕爱锋, 等. 分布式时变增益流域水循环模拟[J]. 地理学报, 2003, 58(5): 789-796.] [4] Arnold J G, Fohrer N. Swat2000: current capabilities and research opportunities in applied watershed modeling[J]. Hyorological Processes, 2005, 19(3): 563-572. [5] Moriasi D N, Arnold J G, Van Liew M W, et al. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations[J]. Transactions of the Asabe, 2007, 50(3): 885-900. [6] Dong Leihua, Xiong Lihua, Yu Kunxia, et al. Research advances in effects of climate change and human activities on hydrology[J]. Advances in Water Science, 2012, 23(2): 278-285. [董磊华, 熊立华, 于坤霞, 等. 气候变化与人类活动对水文影响的研究进展[J]. 水科学进展, 2012, 23(2): 278-285.] [7] Wang Zhonggen, Liu Changming, Huang Youbo. The theory of SWAT model and its application in Heihe basin[J]. Progress in Geography, 2003, 22(1): 79-86. [王中根, 刘昌明, 黄友波. SWAT模型的原理、结构及应用研究[J]. 地理科学进展, 2003, 22(1): 79-86.] [8] Zhang Liping, Li Lingcheng, Xia Jun, et al. Quantitative assessment of the impact of climate variability and human activities on runoff change in the Luanhe River catchment[J]. Journal of Natural Resources, 2015, 30(4): 664-672. [张利平, 李凌程, 夏军, 等. 气候波动和人类活动对滦河流域径流变化的定量影响分析[J]. 自然资源学报, 2015, 30(4): 664-672.] [9] Guo Junting, Zhang Zhiqiang, Wang Shengping, et al. Appling SWAT model to explore the impact of changes in land use and climate on the stream flow in a watershed of Northern China[J]. Acta Ecologica Sinica, 2014, 34(6): 1559-1567. [郭军庭, 张志强, 王盛萍, 等. 应用SWAT模型研究潮河流域土地利用和气候变化对径流的影响[J]. 生态学报, 2014, 34(6): 1559-1567.] [10] Liang Guofu, Ding Shengyan. The impacts of climate and land use changes on the runoff effects: case in the upper reaches of the Yihe river, the Yiluo River basin[J]. Scientia Geographica Sinica, 2012, 32(5): 635-640. [梁国付, 丁圣彦. 气候和土地利用变化对径流变化影响研究: 以伊洛河流域伊河上游地区为例[J]. 地理科学, 2012, 32(5): 635-640.] [11] Wang Zhonggen, Zhu Xinjun, Xia Jun, et al. Study on distributed hydrological model in Hai River Basin[J]. Progress in Geography, 2008, 27(4): 1-6. [王中根, 朱新军, 夏军, 等. 海河流域分布式SWAT模型的构建[J]. 地理科学进展, 2008, 27(4): 1-6.] [12] Lu Zhixiang, Yang Yonggang, Zou Songbing, et al. A study of the land use change and its hydrologic response in the upper reaches of the Fen River[J]. Journal of Glaciology and Geocryology, 2014, 36(1): 192-199. [陆志翔, 杨永刚, 邹松兵, 等. 汾河上游土地利用变化及其水文响应研究[J]. 冰川冻土, 2014, 36(1): 192-199.] [13] Faramarzi M, Abbaspour K C, Vaghefi S A, et al. Modeling impacts of climate change on freshwater availability in Africa[J]. Journal of Hydrology, 2013, 480(4): 85-101. [14] Li Zhi, Liu Wenzhao, Zhang Xunchang, et al. Impacts of land use change and climate variability on hydrology in an agricultural catchment on the Loess Plateau of China[J]. Journal of Hydrology, 2009, 377(1): 35-42. [15] Douglas K R, Srinivasan R, Arnold J G. Soil and Water Assessment Tool (SWAT) model: current developments and applications[J]. Transactions of the Asabe, 2010, 55(4): 1491-1508. [16] Mao Yuna, Ye Aizhong, Xu Jing. Spatial scale analysis of runoff simulation for Liaohe River basin[J]. Journal of China Hydrology, 2014, 34(2): 19-24. [毛玉娜, 叶爱中, 徐静. 辽河流域径流过程模拟的空间尺度效应分析[J]. 水文, 2014, 34(2): 19-24.] [17] Lu Zhixiang, Zou Songbing, Xiao Honglang, et al. How to determine drainage area threshold in alpine regions of upper reaches of Heihe River[J]. Journal of Hydraulic Engineering, 2012, 37(2): 493-499. [陆志翔, 邹松兵, 肖洪浪, 等. 黑河上游高寒山区集水面积阈值确定方法探讨[J]. 冰川冻土, 2012, 37(2): 493-499.] [18] Ning Jicai, Liu Gaohuan, Liu Qingsheng, et al. Spatial discretization of hydrological response units and improved SWAT model[J]. Advances in Water Science, 2012, 23(1): 14-20. [宁吉才, 刘高焕, 刘庆生, 等. 水文响应单元空间离散化及SWAT模型改进[J]. 水科学进展, 2012, 23(1): 14-20.] [19] Shi Xiaoliang, Yang Zhiyong, Yan Denghua, et al. On hydrological response to land-use/cover change in Luanhe River basin[J]. Advances in Water Science, 2014, 25(1): 21-27. [史晓亮, 杨志勇, 严登华, 等. 滦河流域土地利用/覆被变化的水文响应[J]. 水科学进展, 2014, 25(1): 21-27.] [20] Luo Qiao, Wang Kelin, Wang Qinxue. Using SWAT to simulate runoff under different land use scenarios in Xiangjiang River basin[J]. Chinese Journal of Eco-Agriculture, 2011, 19(6): 1431-1436. [罗巧, 王克林, 王勤学. 基于SWAT模型的湘江流域土地利用变化情景的径流模拟研究[J]. 中国生态农业学报, 2011, 19(6): 1431-1436.] [21] Wei Huaibin, Zhang Zhanpang, Yang Jinpeng. Establishing method for soil data base of SWAT model[J]. Water Resources and Hydropower Engineering, 2007, 38(6): 15-18. [魏怀斌, 张占庞, 杨金鹏. SWAT模型土壤数据库建立方法[J]. 水利水电技术, 2007, 38(6): 15-18.] [22] The Workstation of Soil and Fertilizer in Loudi. The soil annals of Loudi in Hunan Province[M]. Changsha: Hunan Science & Technology Press, 1993: 8-9, 21. [娄底土壤肥料工作站. 湖南省娄底地区土壤志[M]. 长沙: 湖南科学技术出版社, 1993: 8-9, 21.] [23] Arnold J G, Kiniry J R, Srinivasan R, et al. Soil and water assessment tool input/output file documentation[M]. Texas: Texas Water Resources Institute, 2012: 302-303, 310. [24] Li Shuo, Lai Zhengqing, Wang Qiao, et al. Distributed simulation for hydrological process in Plain River network region using SWAT model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(6): 106-112, 2. [李硕, 赖正清, 王桥, 等. 基于SWAT模型的平原河网区水文过程分布式模拟[J]. 农业工程学报, 2013, 29(6): 106-112, 2.] [25] Chen Junfeng, Li Xiubin. Simulation of hydrological response to land-cover changes[J]. Chinese Journal of Applied Ecology, 2004, 15(5): 833-836. [陈军锋, 李秀彬. 土地覆被变化的水文响应模拟研究[J]. 应用生态学报, 2004, 15(5): 833-836.] [26] Van-Griensven A, Meixner T, Grunwald S, et al. A global sensitivity analysis tool for the parameters of multi-variable catchment models[J]. Journal of Hydrology, 2006, 324(1): 10-23. [27] Arnold J G, Moriasi D N, Gassman P W, et al. SWAT: model use, calibration, and validation[J]. Transactions of the Asabe, 2012, 55(4): 1491-1508. [28] Eberhart R C, Kennedy J. A new optimizer using particle swarm theory[C]//Proceedings of the Sixth International Symposium on Micro Machine and Human Science, Piscataway NJ: IEEE Service Center, 1995: 39-43. [29] Chen Qiang, Gou Si, Qin Dayong, et al. A high efficiency auto-calibration method for SWAT model[J]. Journal of Hydraulic Engineering, 2010, 41(1): 113-119. [陈强, 苟思, 秦大庸, 等. 一种高效的SWAT模型参数自动率定方法[J]. 水利学报, 2010, 41(1): 113-119.] [30] Abbaspour K C. SWAT calibration and uncertainty programs-a user manual[M]. Swiss: Swiss Federal Institute of Aquatic Science and Technology, 2012. [31] Abbaspour K C, Rouholahnejad E, Vaghefi S, et al. A continental-scale hydrology and water quality model for Europe: calibration and uncertainty of a high-resolution large-scale SWAT model[J]. Journal of Hydrology, 2015, 524(1): 733-752. [32] Gupta H V, Kling H, Yilmaz K K, et al. Decomposition of the mean squared error and NSE performance criteria: implications for improving hydrological modeling [J]. Journal of Hydrology, 2009, 377(2): 80-91. [33] Long Yinping, Zhang Yaonan, Zhao Guohu, et al. The uncertainty in meteorological and hydrological processes modeled by using SWAT model[J]. Journal of Glaciology and Geocryology, 2012, 34(3): 660-667. [龙银平, 张耀南, 赵国辉, 等. SWAT模型水文过程模拟的数据不确定性分析——以青海湖布哈河流域为例[J]. 冰川冻土, 2012, 34(3): 660-667.] [34] Yang Linshan, Li Changbin, Wang Shuaibing, et al. Water balance within soil water reservoir in the loess tableland by means of combination of SWAT model and remote sensing: a case study in the Dongzhi Loess Tableland of eastern Gansu[J]. Journal of Glaciology and Geocryology, 2014, 36(3): 691-698. [杨林山, 李常斌, 王帅兵, 等. 基于SWAT和遥感方法的黄土台塬区土壤水库均衡——以甘肃省陇东黄土董志塬为例[J]. 冰川冻土, 2014, 36(3): 691-698.] |