[1] Bin Chanjia, Qiu Yubao, Shi Lijuan, et al. Comparative validation of snow depth algorithms using AMSR-E passive microwave data in China[J]. Journal of Glaciology and Geocryology, 2013. 35(4):801-813.[宾婵佳, 邱玉宝, 石利娟, 等. 我国主要积雪区AMSR-E被动微波雪深算法对比验证研究[J]. 冰川冻土, 2013, 35(4):801-813.] [2] Liu Yimin, Qian Zheng'an. Influence of sea-land thermal contrast on the climate change in China[M]. Beijing:China Meteorological Press, 2005.[刘屹岷, 钱正安. 海-陆热力差异对我国气候变化的影响[M]. 北京:气象出版社, 2005.] [3] Barnett T P, Dümenil L, Schlese U, et al. The effect of Eurasian snow cover on regional and global climate variations[J]. Journal of the Atmospheric Sciences, 1989, 46(5):661-686. [4] Qiu Yubao, Guo Huadong, Bin Chanjia, et al. Comparasion on snow depth algorithms over China using AMSR-E passive microwave remote sensing[C]//Geoscience and Remote Sensing Symposium (IGARSS), 2014 IEEE International. IEEE, 2014:851-854. [5] Blanford H F. On the connexion of the Himalaya snowfall with dry winds and seasons of drought in India[J]. Proceedings of the Royal Society of London, 1884, 37(232/233/234):3-22. [6] Laba Zhuoma, Qiu Yubao, Cidan Basang, et al. The validation of MODIS daily snow cover products after cloud removal in Tibet Autonomous Region[J]. Journal of Glaciology and Geocryology, 2016, 38(1):159-169.[拉巴卓玛, 邱玉宝, 次旦巴桑, 等. 西藏高原MODIS每日积雪产品去云算法过程对比验证研究[J]. 冰川冻土, 2016, 38(1):159-169.] [7] Yan Yuna, Che Tao, Li Hongyi, et al. Using snow remote sensing data to improve the simulation accuracy of spring snow melt runoff:take Babao River basin as an example[J]. Journal of Glaciology and Geocryology, 2016, 38(1):211-221.[闫玉娜, 车涛, 李弘毅, 等. 使用积雪遥感面积数据改善山区春季融雪径流模拟精度[J]. 冰川冻土, 2016, 38(1):211-221.] [8] Chu Duo, Yang Yong, Luobu Jiancan, et al. The variations of snow cover days over the Tibetan Plateau during 1981-2010[J]. Journal of Glaciology and Geocryology, 2015, 37(6):1461-1472.[除多, 杨勇, 罗布坚参, 等. 1981-2010年青藏高原积雪日数时空变化特征分析[J]. 冰川冻土, 2015, 37(6):1461-1472.] [9] Dankers R, De Jong S M. Monitoring snow-cover dynamics in Northern Fennoscandia with SPOT VEGETATION images[J]. International Journal of Remote Sensing, 2004, 25(15):2933-2949. [10] Hendrix S D. Variation in seed weight and its effects on germination in Pastinaca sativa L.(Umbelliferae)[J]. American Journal of Botany, 1984:795-802. [11] Xiao X, Zhang Q, Boles S, et al. Mapping snow cover in the pan-Arctic zone, using multi-year (1998-2001) images from optical VEGETATION sensor[J]. International Journal of Remote Sensing, 2004, 25(24):5731-5744. [12] Hall D K, Riggs G A, Salomonson V V, et al. MODIS snow-cover products[J]. Remote sensing of Environment, 2002, 83(1):181-194. [13] Grody N C, Basist A N. Global identification of snowcover using SSM/I measurements[J]. IEEE Transactions on geoscience and remote sensing, 1996, 34(1):237-249. [14] Che Tao, Li Xin, Jin Rui, et al. Snow depth derived from passive microwave remote-sensing data in China[J]. Annals of Glaciology, 2008, 49(1):145-154. [15] Feng Qisheng, Zhang Xuetong, Liang Tiangang. Dynamic monitoring of snow cover based on MOD10A1 and AMSR-E in the north of Xinjiang Province, China[J]. Acta Prataculturae Sinica, 2009, 18(1):125-133.[冯琦胜, 张学通, 梁天刚. 基于MOD10A1和AMSR-E的北疆牧区积雪动态监测研究[J]. 草业学报, 2009, 18(1):125-133.] [16] Lu Xinyu, Wang Xiuqin, Cui Caixia et al. Snow depth retrieval based on AMSR-E data in Northern Xinjiang region, China[J]. Journal of Glaciology and Geocryology, 2013, 35(1):40-47.[卢新玉, 王秀琴, 崔彩霞, 等. 基于AMSR-E的北疆地区积雪深度反演[J]. 冰川冻土, 2013, 35(1):40-47.] [17] Dai Liyun, Che Tao, Wang Jian, et al. Snow depth and snow water equivalent estimation from AMSR-E data based on a priori snow characteristics in Xinjiang, China[J]. Remote Sensing of Environment, 2012, 127:14-29. [18] Hall D K, Riggs G A. Accuracy assessment of the MODIS snow products[J]. Hydrological Processes, 2007, 21(12):1534-1547. [19] Gafurov A, B rdossy A. Cloud removal methodology from MODIS snow cover product[J]. Hydrology and Earth System Sciences, 2009, 13(7):1361. [20] Parajka J, Bl schl G. Spatio-temporal combination of MODIS images-potential for snow cover mapping[J]. Water Resources Research, 2008, 44(3). [21] Gao Yang, Xie Hongjie, Yao Tandong, et al. Integrated assessment on multi-temporal and multi-sensor combinations for reducing cloud obscuration of MODIS snow cover products of the Pacific Northwest USA[J]. Remote Sensing of Environment, 2010, 114(8):1662-1675. [22] Paudel K P, Andersen P. Monitoring snow cover variability in an agropastoral area in the Trans Himalayan region of Nepal using MODIS data with improved cloud removal methodology[J]. Remote Sensing of Environment, 2011, 115(5):1234-1246. [23] Dietz A J, Kuenzer C, Conrad C. Snow cover variability in Central Asia between 2000 and 2011 derived from improved MODIS daily snow cover products[J]. International Journal of Remote Sensing, 2013, 34(11):3879-3902. [24] Dietz A J, Wohner C, Kuenzer C. European snow cover characteristics between 2000 and 2011 derived from improved MODIS daily snow cover products[J]. Remote Sensing, 2012, 4(8):2432-2454. [25] López-Burgos V, Gupta H V, Clark M. Reducing cloud obscuration of MODIS snow cover area products by combining spatio-temporal techniques with a probability of snow approach[J]. Hydrology and Earth System Sciences, 2013, 17(5):1809-1823. [26] Gao Yang, Xie Hongjie, Yao Tandong, et al. Toward advanced daily cloud-free snow cover and snow water equivalent products from Terra Aqua MODIS and Aqua AMSR-E measurements[J]. Journal of Hydrology, 2010, 385(1):23-35. [27] Thirel G, Salamon P, Burek P, et al. Assimilation of MODIS snow cover area data in a distributed hydrological model[J]. Hydrology and Earth System Sciences Discussions, 2011, 8(1):1329-1364. [28] Huang Xiaodong, Hao Xiaohua, Wang Wei, et al. Algorithms for cloud removal in MODIS daily snow products[J]. Journal of Glaciology and Geocryology, 2012, 34(5):1118-1126.[黄晓东, 郝晓华, 王玮, 等. MODIS逐日积雪产品去云算法研究[J]. 冰川冻土, 2012, 34(5):1118-1126.] [29] Liang Tiangang, Zhang Xuetong, Xie Hongjie, et al. Toward improved daily snow cover mapping with advanced combination of MODIS and AMSR-E measurements[J]. Remote Sensing of Environment, 2008, 112(10):3750-3761. [30] Zhang Huan, Qiu Yubao, Zheng Zhaojun, et al. Comparative study of the feasibility of cloud removal methods based on MODIS seasonal snowcover data over the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2016, 38(3):714-724.[张欢, 邱玉宝, 郑照军, 等. 基于MODIS的青藏高原季节性积雪去云方法可行性比较研究[J]. 冰川冻土, 2016, 38(3):714-724.] [31] Li Peiji. Distribution of snow cover over the High Asia[J]. Journal of Glaciology and Geocryology, 1995, 17(4):291-298.[李培基. 高亚洲积雪分布[J].冰川冻土, 1995, 17(4):291-298.] [32] Verma R K, Subramaniam K, Dugam S S. Interannual and long-term variability of the summer monsoon and its possible link with northern hemispheric surface air temperature[J]. Proceedings of the Indian Academy of Sciences-Earth and Planetary Sciences, 1985, 94(3):187-198. [33] Stow D A, Hope A, McGuire D, et al. Remote sensing of vegetation and land-cover change in Arctic Tundra Ecosystems[J]. Remote sensing of environment, 2004, 89(3):281-308. [34] SRTM DEM[EB/OL]. (2016-01-11)[2016-10-15]. http://srtm.csi.cgiar.org. [35] Dankers R, De Jong S M. Monitoring snow-cover dynamics in Northern Fennoscandia with SPOT VEGETATION images[J]. International Journal of Remote Sensing, 2004, 25(15):2933-2949. [36] Painter T H, Brodzik M J, Racoviteanu A, et al. Automated mapping of Earth's annual minimum exposed snow and ice with MODIS[J]. Geophysical Research Letters, 2012, 39(20):L20501. [37] Rittger K, Painter T H, Dozier J. Assessment of methods for mapping snow cover from MODIS[J]. Advances in Water Resources, 2013, 51:367-380. [38] Qiu Yubao, Guo Huadong, Chu Duo, et al. MODIS daily cloud-free snow cover product over the Tibetan Plateau (2002-2015)[J]. China Scientific Data, 2016. DOI:10.11922/csdata.170.2016.0003.[邱玉宝, 郭华东, 除多, 等. 青藏高原MODIS逐日无云积雪面积数据集(2002-2015年)[J]. 中国科学数据, 2016. DOI:10.11922/csdata.170.2016.0003.] |