X img

官方微信

img

群号:冰川冻土交流群

QQ群:218834310

高级检索
作者投稿 专家审稿 编辑办公 编委办公 主编办公

冰川冻土 ›› 2017, Vol. 39 ›› Issue (3): 583-592.doi: 10.7522/j.issn.1000-0240.2017.0065

• 冰冻圈与全球变化 • 上一篇    下一篇

基于机器学习模型的青藏高原日降水数据的订正研究

陈浩1, 宁忱1, 南卓铜2, 王玉丹3, 吴小波3, 赵林3   

  1. 1. 宝鸡文理学院 地理与环境学院, 陕西 宝鸡 721013;
    2. 南京师范大学 地理科学学院, 江苏 南京 210023;
    3. 中国科学院 西北生态环境资源研究院, 甘肃 兰州 730000
  • 收稿日期:2016-12-20 修回日期:2017-02-10 出版日期:2017-06-25 发布日期:2017-09-09
  • 通讯作者: 南卓铜,E-mail:nanzt@njnu.edu.cn E-mail:nanzt@njnu.edu.cn
  • 作者简介:陈浩(1978-),男,陕西宝鸡人,讲师,2015年在中国科学院寒区旱区环境与工程研究所获博士学位,从事降水与气象灾害研究.E-mail:chenhao@bjwlxy.cn
  • 基金资助:
    国家自然科学基金项目(41471059);陕西省科技统筹创新计划项目(2016KTCL03-17);陕西省教育厅重点实验室项目(16JS006)资助

Correction of the daily precipitation data over the Tibetan Plateau with machine learning models

CHEN Hao1, NING Chen1, NAN Zhuotong2, WANG Yudan3, WU Xiaobo3, ZHAO Lin3   

  1. 1. School of Geography and Environment, Baoji University of Science and Art, Baoji 721013, Shaanxi, China;
    2. School of Geography Science, Nanjing Normal University, Nanjing 210023, China;
    3. Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
  • Received:2016-12-20 Revised:2017-02-10 Online:2017-06-25 Published:2017-09-09

摘要: 选择了5种机器学习模型,即k最近邻方法(KNN)、多元自回归样条方法(MARS)、支持向量机(SVM)、多项对数线性模型(MLM)和人工神经网络(ANN),利用海拔、相对湿度、坡向、植被、风速、气温和坡度等因子订正ITPCAS和CMORPH两种常用的青藏高原日降水数据集。五折交叉验证表明,KNN的订正精度最高。在三个验证站点(唐古拉、西大滩和五道梁)的误差分析,以及对青藏高原年降水量的空间分析均表明,KNN对CMORPH的订正效果显著,对ITPCAS在局部区域有一定订正效果,ITPCAS及其订正值的降水空间分布准确度高于CMORPH的订正值。主成分分析法表明降水订正是气象和环境因子综合作用的结果。

关键词: 机器学习模型, 降水数据, 订正, 青藏高原

Abstract: In this paper, five machine learning models, namely k-nearest neighbor (KNN), multivariate adaptive regression splines (MARS), support vector machine (SVM), multinomial log-linear models (MLM) and artificial neural networks (ANN), are selected to correct two commonly used precipitation datasets, ITPCAS (Institute of Tibetan Plateau Research, Chinese Academy of Sciences) and CMORPH (climate prediction center morphing technique), over the Tibetan Plateau by establishing the relationship between daily precipitation and environmental data (elevation, slope, aspect, vegetation), as well as meteorological factors (air temperature, humidity, wind speed). The 5-fold cross validation shows that the KNN has the highest accuracy. The error analysis over the Tanggula, Xidatan and Wudaoliang Stations and the spatial analysis on annual precipitation over the plateau show that the KNN model can significantly correct the CMORPH over the plateau and the correction on the ITPCAS is significant locally. The KNN-corrected CMORPH has lower accuracy than the two ITPCAS precipitation. Principal component analysis indicates that the correction is the comprehensive effects of both environmental and meteorological factors.

Key words: machine learning model, precipitation data, correction, Tibetan Plateau

中图分类号: 

  • P407