[1] Taylor D L, Hollingsworth T N, McFarland J, et al. A first comprehensive census of fungi in soil reveals both hyperdiversity and fine-scale niche partitioning[J]. Ecological Monographs, 2014, 84(1):3-20. [2] Hawksworth D L. Global species numbers of fungi:are tropical studies and molecular approaches contributing to a more robust estimate?[J]. Biodiversity Conservation, 2012, 21(9):2425-2433. [3] Hawksworth D L. The magnitude of fungal diversity:the 1.5 million species estimate revisited[J]. Mycological Research, 2001, 105(12):1422-1432. [4] Arenz B E, Blanchette R A. Distribution and abundance of soil fungi in Antarctica at sites on the Peninsula, Ross Sea Region and McMurdo Dry Valleys[J]. Soil Biology and Biochemistry, 2011, 43(2):308-315. [5] Jumpponen A. Soil fungal community assembly in a primary successional glacier forefront ecosystem as inferred from rDNA sequence analyses[J]. New Phytologist, 2003, 158(3):569-578. [6] Schadt C W, Martin A P, Lipson D A, et al. Seasonal dynamics of previously unknown fungal lineages in tundra soils[J]. Science, 2003, 301(5638):1359-1361. [7] Skidmore M L, Foght J M, Sharp M J, et al. Microbial life beneath a high arctic glacier[J]. Applied and Environmental Microbiology, 2000, 66(8):3214-3220. [8] Sharp M, Parkes J, Cragg B, et al. Widespread bacterial populations at glacier beds and their relationship to rock weathering and carbon cycling[J]. Geology, 1999, 27(2):107-110. [9] Skidmore M, Anderson S P, Sharp M, et al. Comparison of microbial community compositions of two subglacial environments reveals a possible role for microbes in chemical weathering processes[J]. Applied and Environmental Microbiology, 2005, 71(11):6986-6997. [10] Edwards A, Anesio A M, Rassner S M, et al. Possible interactions between bacterial diversity, microbial activity and supraglacial hydrology of cryoconite holes in Svalbard[J]. The ISME Journal, 2011, 5(1):150-160. [11] Vincent W F. Evolutionary origins of antarctic microbiota:invasion, selection and endemism[J]. Antarctic Science, 2000, 12(3):374-385. [12] Takeuchi N, Matsuda Y, Sakai A, et al. A large amount of biogenic surface dust(cryoconite) on a glacier in the Qilian Mountains, China[J]. Bulletin of Glaciological Research, 2005, 22(22):1-8. [13] Li Mingyuan, Wang Jilian, Gulbahar Sawut. Culturable bacterial diversity in snow, ice and meltwater of the Yangbark Glacier, Muztag Ata[J]. Journal of Glaciology and Geocryology, 2015, 37(6):1634-1641.[李明源, 王继莲, 古丽巴哈尔·萨吾提. 新疆东帕米尔高原慕士塔格峰洋布拉克冰川雪冰及融水中可培养细菌多样性分析[J]. 冰川冻土, 2015, 37(6):1634-1641.] [14] Tao Ling, Gu Yanling, Zheng Xiaoji, et al. Phylogeny and physiological diversity of bacteria from meltwater of the Glacier No.1 in the Tianshan Mountains[J]. Journal of Glaciology and Geocryology, 2015, 37(2):511-521.[陶玲, 顾燕玲, 郑晓吉, 等. 天山一号冰川融水可培养细菌生理生化特性及其系统发育[J]. 冰川冻土, 2015, 37(2):511-521.] [15] Sun Meiping, Li Zhongqin, Yao Xiaojun, et al. Analysis on runoff variation of Glacier No.1 at the headwaters of the Ürümqi River from 1959 to 2008[J]. Journal of Natural Resources, 2012, 27(4):650-660.[孙美平, 李忠勤, 姚晓军, 等. 1959-2008年乌鲁木齐河源1号冰川融水径流变化及其原因[J]. 自然资源学报, 2012, 27(4):650-660.] [16] Li Zhongqin, Shen Yongping, Wang Feiteng, et al. Response of glacier melting to climate change:take Ürümqi Glacier No.1 as an example[J]. Journal of Glaciology and Geocryology, 2007, 29(3):333-342.[李忠勤, 沈永平, 王飞腾, 等. 冰川消融对气候的影响:以乌鲁木齐河源1号冰川为例[J]. 冰川冻土, 2007, 29(3):333-342.] [17] Ni Xuejiao, Qi Xing'e, Gu Yanling, et al. Community structure and phylogenetic analysis of cyanobacteria in cryoconite from surface of the Glacier No.1 in the Tianshan Mountains[J]. Acta Microbiologica Sinica, 2014, 54(11):1256-1266.[倪雪姣, 齐兴娥, 顾燕玲, 等. 天山乌鲁木齐河源一号冰川表面粉尘蓝细菌群落结构及其系统发育[J]. 微生物学报, 2014, 54(11):1256-1266.] [18] Zhang Wei, Zhang Gaosen, Liu Guangxiu, et al. Diversity and its temporal-spatial characteristics of eukaryotic microorganisms on Glacier No.1 at the Ürümqi river head, Tianshan Mountains[J]. Journal of Glaciology and Geocryology, 2010, 32(5):906-913.[张威, 章高森, 刘光琇, 等. 天山乌鲁木齐河源1号冰川中真核微生物多样性分布及时空变化研究[J]. 冰川冻土, 2010, 32(5):906-913.] [19] Stibal M, Wadham J L, Lis G P, et al. Methanogenic potential of Arctic and Antarctic subglacial environments with contrasting organic carbon sources[J]. Global Change Biology, 2012, 18(11):3332-3345. [20] Boyd E S, Lange R K, Mitchell A C, et al. Diversity, abundance, and potential activity of nitrifying and nitrate-reducing microbial assemblages in a subglacial ecosystem[J]. Applied and Environmental Microbiology, 2011, 77(14):4778-4787. [21] Zhou Jizhong, Bruns M A, Tiedje J M. DNA recovery from soils of diverse composition[J]. Applied and Environmental Microbiology, 1996, 62(2):316-322. [22] Anderson I C, Cairney J W. Diversity and ecology of soil fungal communities:increased understanding through the application of molecular techniques[J]. Environmental Microbiology, 2004, 6(8):769-779. [23] Schloss P D, Handelsman J. Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness[J]. Applied and Environmental Microbiology, 2005, 71(3):1501-1506. [24] Tamura K, Peterson D, Peterson N, et al. MEGA5:molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods[J]. Molecular Biology and Evolution, 2011, 28(10):2731-2739. [25] Hodson A, Anesio A M, Tranter M, et al. Glacial ecosystems[J]. Ecological Monographs, 2008, 78(1):41-67. [26] Stibal M, Tranter M, Benning L G, et al. Microbial primary production on an Arctic glacier is insignificant in comparison with allochthonous organic carbon input[J]. Environmental Microbiology, 2008, 10(8):2172-2178. [27] Treseder K K, Lennon J T. Fungal traits that drive ecosystem dynamics on land[J]. Microbiology and Molecular Biology Reviews, 2015, 79(2):243-262. [28] Anderson S P. Biogeochemistry of glacial landscape systems[J]. Annual Review of Earth and Planetary Sciences, 2007, 35(1):375-399. [29] Stibal M, Šabacká M, Žárský J. Biological processes on glacier and ice sheet surfaces[J]. Nature Geoscience, 2012, 5(11):771-774. [30] Christner B C, Kvitko B H, Reeve J N. Molecular identification of bacteria and eukarya inhabiting an Antarctic cryoconite hole[J]. Extremophiles, 2003, 7(3):177-183. [31] Buzzini P, Branda E, Goretti M, et al. Psychrophilic yeasts from worldwide glacial habitats:diversity, adaptation strategies and biotechnological potential[J]. FEMS Microbiology Ecology, 2012, 82(2):217-241. [32] Hanson C A, Fuhrman J A, Horner-Devine M C, et al. Beyond biogeographic patterns:processes shaping the microbial landscape[J]. Nature Review Microbiology, 2012, 10(7):497-506. [33] Johnson Z I, Zinser E R, Coe A, et al. Niche partitioning among prochlorococcus ecotypes along ocean-scale environmental gradients[J]. Science, 2006, 311(5768):1737-1740. [34] Dong Zhiwen, Li Zhongqin, Wang Feiteng, et al. Characteristics of atmospheric dust deposited in snow on Ürümqi Glacier No.1 of eastern Tian Shan, China:a comparison of measurements during Asian dust period with non-dust period[J]. Environmental Science, 2009, 30(6):1818-1825.[董志文, 李忠勤, 王飞腾, 等. 天山乌鲁木齐河源冰川积雪内不溶粉尘特征:沙尘与非沙尘活动季节的比较[J]. 环境科学, 2009, 30(6):1818-1825.] |