冰川冻土 ›› 2017, Vol. 39 ›› Issue (4): 801-810.doi: 10.7522/j.issn.1000-0240.2017.0090
刘洁1, 张伟2, 夏军1, 沈永平2, 康世昌2
收稿日期:
2016-12-15
修回日期:
2017-07-01
出版日期:
2017-08-25
发布日期:
2017-11-15
通讯作者:
夏军,E-mail:xiaj@igsnrr.ac.cn
E-mail:xiaj@igsnrr.ac.cn
作者简介:
刘洁(1993-),女,山西太原人,2016年在兰州大学获学士学位,现为武汉大学在读硕士研究生,从事水文水资源研究.E-mail:liujie16@whu.edu.cn
基金资助:
LIU Jie1, ZHANG Wei2, XIA Jun1, SHEN Yongping2, KANG Shichang2
Received:
2016-12-15
Revised:
2017-07-01
Online:
2017-08-25
Published:
2017-11-15
摘要: 积雪是冰冻圈重要的组成部分,基于积雪消融量与气温之间显著的正线性关系假定建立的度日模型是模拟积雪消融量的有效工具。从经典度日模型、度日模型的改进(例如辐射数据的引入)、分布式度日模型以及遥感数据在度日模型中的应用等方面总结了2000-2016年度日模型的主要研究进展。同时,考虑到影响度日模型的关键参数和变量,系统总结了降水状态判断的温度阈值、度日因子、辐射系数的最新研究进展及其在度日模型中的使用。在变化环境下开展度日模型与遥感、GIS技术相结合的协同研究,是目前度日模型研究的主要方向。
中图分类号:
刘洁, 张伟, 夏军, 沈永平, 康世昌. 2000-2016年度日模型的主要研究进展及关键问题[J]. 冰川冻土, 2017, 39(4): 801-810.
LIU Jie, ZHANG Wei, XIA Jun, SHEN Yongping, KANG Shichang. Study of degree-day model from 2000 to 2016:the main progress and key issues[J]. JOURNAL OF GLACIOLOGY AND GEOCRYOLOGY, 2017, 39(4): 801-810.
[1] Li Jing. Response of snow cover to climate change in Tarim River Basin and simulation of snowmelt runoff in mountainous watershed[D]. Beijing:Graduate University of Chinese Academy of Sciences, 2011.[李晶. 塔里木河流域积雪对气候变化的响应及其山区流域融雪径流模拟研究[D]. 北京:中国科学院研究生院, 2011.] [2] Qin Dahe, Xiao Cunde, Ding Yongjian, et al. Progress on cryospheric studies by international and Chinese communities and perspectives[J]. Journal of Applied Meteorological Science, 2006, 17(6):649-656.[秦大河, 效存德, 丁永建, 等. 国际冰冻圈研究动态和我国冰冻圈研究的现状与展望[J]. 应用气象学报, 2006, 17(6):649-656.] [3] Li Xiangying, Ding Yongjian, Ye Baisheng, et al. Changes in physical features of Glacier No.1 of the Tianshan Mountains in response to climate change[J]. Chinese Science Bulletin, 2011, 56(26):2820-2827.[李向应, 丁永建, 叶柏生, 等. 天山1号冰川成冰带和积雪特征对气候变化的响应[J]. 科学通报, 2011, 56(19):1583.] [4] Wang Zilong, Fu Qiang, Jiang Qiuxiang, et al. Advances in water and heat transfer mechanism and snow model[J]. Journal of China Hydrology, 2016, 36(3):6-10.[王子龙, 付强, 姜秋香, 等. 积雪水热迁移机理与模型研究进展[J]. 水文, 2016, 36(3):6-10.] [5] Che Tao, Li Xin. Spatial distribution and temporal variation of snow water resources in China during 1993-2002[J]. Journal of Glaciology and Geocryology, 2005, 27(1):64-67.[车涛, 李新. 1993-2002年中国积雪水资源时空分布与变化特征[J]. 冰川冻土, 2005, 27(1):64-67.] [6] Sturm M. White water:fifty years of snow research in WRR and the outlook for the future[J]. Water Resources Research, 2015, 51(7):4948-4965. [7] Hock R. Temperature index melt modelling in mountain areas[J]. Journal of Hydrology, 2003, 282(1/2/3/4):104-115. [8] Yong, Liu Shiyin. Progress of the application of degree-day model to study glaciers and snow cover[J]. Journal of Glaciology and Geocryology, 2006, 28(1):101-107.[张勇, 刘时银. 度日因子模型在冰川与积雪研究中的应用进展[J]. 冰川冻土, 2006, 28(1):101-107.] [9] Zilaibu Abulaiti, Abudu Shalamu, Saydi Muattar, et al. A review on the application of snowmelt runoff model[J]. Journal of Xinjiang University (Natural Science Edition), 2012, 29(2):235-239.[孜来布·阿不来提, 阿不都·沙拉木, 穆艾塔尔·赛地, 等. 融雪径流模型应用研究综述[J]. 新疆大学学报(自然科学版), 2012, 29(2):235-239.] [10] Ohmura A. Physical basis for the temperature-based melt-index method[J]. Journal of Applied Meteorology, 2000, 40(4):753-761. [11] Hock R. A distributed temperature-index ice-and snowmelt model including potential direct solar radiation[J]. Journal of Glaciology, 1999, 45(149):101-111. [12] Pellicciotti F, Brock B, Strasser U, et al. An enhanced temperature-index glacier melt model including the shortwave radiation balance:development and testing for Haut Glacier d'Arolla, Switzerland[J]. Journal of Glaciology, 2005, 51(175):573-587. [13] Kustas W P, Rango A, Uijlenhoet R. A simple energy budget algorithm for the snowmelt runoff model[J]. Water Resources Research, 1994, 30(5):1515-1527. [14] Qing Wenwu, Chen Rensheng, Liu Shiyin, et al. Research and application of two kinds of temperature-index model on the Koxkar Glacier[J]. Advances in Earth Science, 2011, 26(4):409-416.[卿文武, 陈仁升, 刘时银, 等. 两类度日因子模型在天山科其喀尔巴西冰川消融估算中的应用[J]. 地球科学进展, 2011, 26(4):409-416.] [15] Wheler B A, Flowers G E. Spatially distributed temperature-index melt modelling of glaciers in the Donjek Range, St. Elias Mountains, Yukon Territory[C]//AGU Fall Meeting Abstracts, 2008, 244(6):709-716. [16] Fuchs P, Asaoka Y, Kazama S. Estimation of glacier melt in the tropical Zongo with an enhanced temperature-index model[J]. Journal of Japan Society of Civil Engineers:Series B1, 2013, 69(1/2):310-313. [17] Hulth J, Hock R M, Rolstad C. An enhanced distributed temperature-index melt model including radiosonde data and solar radiation[C]//AGU Fall Meeting, San Francisco, December 14-18, 2009. [18] Irvine-Fynn T D L, Hanna E, Barr N E, et al. Examination of a physically based high-resolution distributed Arctic temperature-index melt model, on Midtre Lovénbreen, Svalbard[J]. Hydrological Processes, 2013, 28(1):134-149. [19] Li Xingong, Williams M W. Snowmelt runoff modelling in an arid mountain watershed, Tarim Basin, China[J]. Hydrological Processes, 2008, 22(19):3931-3940. [20] Wang Jian, Li Shuo. Effect of climatic change on snowmelt runoffs in mountainous regions of inland rivers in Northwestern China[J]. Science in China:Series D Earth Sciences, 2006, 49(8):881-888. [21] Pellicciotti F, Brock B, Strasser U, et al. The distributed application of an enhanced temperature-index melt model including albedo and global radiation[C]//AGU Fall Meeting, San Francisco, December 8-12, 2003. [22] Jost G, Moore R D, Smith R, et al. Distributed temperature-index snowmelt modelling for forested catchments[J]. Journal of Hydrology, 2012, 420(7):87-101. [23] Fang Shifeng, Pei Huan, Liu Zhihui, et al. Study on the distributed snowmelt runoff process based on RS and GIS[J]. Journal of Remote Sensing, 2008, 12(4):655-662.[房世峰, 裴欢, 刘志辉, 等. 遥感和GIS支持下的分布式融雪径流过程模拟研究[J]. 遥感学报, 2008, 12(4):655-662.] [24] Koboltschnig G, Holzmann H, Sch ner W, et al. Potential of a water balance model with high temporal resolution for the distributed modelling of ice-and snowmelt processes at high elevated sites[C]//Proceedings of the 63rd Eastern Snow Conference, Delaware USA, 2006:19-63. [25] Xia Jun, Wang Gangsheng, Lü Aifeng, et al. A research on distributed time variant gain modeling[J]. Acta Geographica Sinica, 2003, 58(5):789-796.[夏军, 王纲胜, 吕爱锋, 等. 分布式时变增益流域水循环模拟[J]. 地理学报, 2003, 58(5):789-796.] [26] Verbunt M, Gurtz J, Jasper K, et al. The hydrological role of snow and glaciers in alpine river basins and their distributed modeling[J]. Journal of Hydrology, 2003, 282(1/2/3/4):36-55. [27] Klok E J, Jasper K, Roelofsma K P, et al. Distributed hydrological modelling of a heavily glaciated Alpine river basin[J]. Hydrological Sciences Journal, 2001, 46(4):553-570. [28] Finger D, Pellicciotti F, Konz M, et al. The value of glacier mass balance, satellite snow cover images, and hourly discharge for improving the performance of a physically based distributed hydrological model[J]. Water Resources Research, 2011, 47(7):2379-2392. [29] Nepal S, Krause P, Fl gel W A, et al. Understanding the hydrological system dynamics of a glaciated alpine catchment in the Himalayan region using the J2000 hydrological model[J]. Hydrological Processes, 2014, 28(3):1329-1344. [30] Shi Jiancheng, Xiong Chuan, Jiang Lingmei. Review of snow water equivalent microwave remote sensing[J]. Science China:Earth Sciences, 2016, 59(4):731-745.[施建成, 熊川, 蒋玲梅. 雪水当量主被动微波遥感研究进展[J]. 中国科学:地球科学, 2016, 46(4):529-543.] [31] Zhao Qiudong, Liu Zhihui, Qin Rongmao, et al. Research advance of snowmelt model[J]. Xinjiang Agricultural Sciences, 2007, 44(6):734-739.[赵求东, 刘志辉, 秦荣茂, 等. 融雪模型研究进展[J]. 新疆农业科学, 2007, 44(6):734-739.] [32] Nagler T, Rott H, Malcher P, et al. Assimilation of meteorological and remote sensing data for snowmelt runoff forecasting[J]. Remote Sensing of Environment, 2008, 112(4):1408-1420. [33] Jain S K, Goswami A, Saraf A K. Assessment of snowmelt runoff using remote sensing and effect of climate change on runoff[J]. Water Resources Management, 2010, 24(9):1763-1777. [34] Aggarwal S P, Thakur P K, Nikam B R, et al. Integrated approach for snowmelt run-off estimation using temperature index model, remote sensing and GIS[J]. Current Science, 2014, 106(3):397-407. [35] Tekeli A E. Operational hydrological forecasting of snowmelt runoff by remote sensing and geographic information systems integration[D]. Ankara, Turkey:Middle East Technical University, 2005. [36] Yan Yuna, Che Tao, Li Hongyi, et al. Using snow remote sensing data to improve the simulation accuracy of spring snowmelt runoff:take Babao River basin as an example[J]. Journal of Glaciology and Geocryology, 2016, 38(1):211-221.[闫玉娜, 车涛, 李弘毅, 等. 使用积雪遥感面积数据改善山区春季融雪径流模拟精度[J]. 冰川冻土, 2016, 38(1):211-221.] [37] Tiwari S, Kar S C, Bhatla R. Examination of snowmelt over Western Himalayas using remote sensing data[J]. Theoretical and Applied Climatology, 2016, 125(1):227-239. [38] Wu Xuejiao, Shen Yongping, Wang Ninglian, et al. Coupling the WRF model with a temperature index model based on remote sensing for snowmelt simulations in a river basin in the Altay Mountains, north-west China[J]. Hydrological Processes, 2016, 30(21):3967-3977. [39] Ye Aizhong, Duan Qingyun, Zeng Hongjuan, et al. A distributed time-variant gain hydrological model based on remote sensing[J]. Journal of Resources and Ecology, 2010, 1(3):222-230. [40] Liu Xiaolin, Yang Shengtian, Zhao Changsen, et al. The snowmelt runoff model based on multi-source remote sensing studied and applied in ungauged basins[J]. Remote Sensing Technology and Application, 2015, 30(4):645-652.[刘晓林, 杨胜天, 赵长森, 等. 多源遥感驱动的SRM模型在缺资料地区的研究及应用[J]. 遥感技术与应用, 2015, 30(4):645-652.] [41] Wang Zhonggen, Liu Changming, Huang Youbo. The theory of SWAT model and its application in Heihe basin[J]. Progress in Geography, 2003, 22(1):79-86.[王中根, 刘昌明, 黄友波. SWAT模型的原理、结构及应用研究[J]. 地理科学进展, 2003, 22(1):79-86.] [42] Zhao Jie, Xu Changchun, Gao Shentong, et al. Hydrological modeling in the Ürümqi River basin based on SWAT[J]. Arid Land Geography, 2015, 38(4):666-674.[赵杰, 徐长春, 高沈瞳, 等. 基于SWAT模型的乌鲁木齐河流域径流模拟[J]. 干旱区地理, 2015, 38(4):666-674.] [43] Hao Zhenchun, Zhang Yueguan, Yang Chuanguo, et al. Effects of topography and snowmelt on hydrologic simulation in the Yellow River's source region[J]. Advances in Water Science, 2013, 24(3):311-318.[郝振纯, 张越关, 杨传国, 等. 黄河源区水文模拟中地形和融雪影响[J]. 水科学进展, 2013, 24(3):311-318.] [44] Bai Shuying, Wang Li, Shi Jianqiao, et al. Runoff simulation for Kaidu River basin based on SWAT model[J]. Journal of Arid Land Resources and Environment, 2013, 27(9):79-84.[白淑英, 王莉, 史建桥, 等. 基于SWAT模型的开都河流域径流模拟[J]. 干旱区资源与环境, 2013, 27(9):79-84.] [45] Gao Hongkai, He Xiaobo, Ye Baisheng, et al. Modeling the runoff and glacier mass balance in a small watershed on the Central Tibetan Plateau, China, from 1955 to 2008[J]. Hydrological Processes, 2012, 26(11):1593-1603. [46] Chen Rensheng, Lü Shihua, Kang Ersi, et al. A distributed water-heat coupled model for mountainous watershed of an inland river basin of Northwest China(I):model structure and equations[J]. Environmental Geology, 2008, 53(6):1299-1309. [47] Wigmosta M S, Vail L W, Lettenmaier D P. A distributed hydrology-vegetation model for complex terrain[J]. Water Resources Research, 1994, 30(6):1665-1679. [48] Kang Ersi, Cheng Guodong, Lan Yongchao, et al. A model for simulating the response of runoff from the mountainous watersheds of inland river basins in the arid area of northwest China to climatic changes[J]. Scientia in China:Series D, 1999, 42(Suppl 1):52-63.[康尔泗,程国栋,蓝永超,金会军. 西北干旱区内陆河流域出山径流变化趋势对气候变化响应模型[J]. 中国科学:D辑地球科学, 1999, (增刊1):47-54.] [49] Xu Liang, Wood E F, Lettenmaier D P. Surface soil moisture parameterization of the VIC-2L model:evaluation and modification[J]. Global & Planetary Change, 1996, 13(1):195-206. [50] Arnold J G, Srinivasan R, Muttiah R S, et al. Large area hydrologic modeling and assessment part I:model development[J]. Journal of the American Water Resources Association, 1998, 34(1):73-89. [51] Refsgaard J C, Seth S M, Bathurst J C, et al. Application of the SHE to catchments in India Part I:general results[J]. Journal of Hydrology, 1992, 140(1/2/3/4):1-23. [52] Singh V P. Computer models of watershed hydrology[M]. Highlands Ranch, Colorado, USA:Water Resources Publications, 1995:443-476. [53] Han Chuntan, Chen Rensheng, Liu Junfeng, et al. A discuss of the separating solid and liquid precipitations[J]. Journal of Glaciology and Geocryology, 2010, 32(2):249-256.[韩春坛, 陈仁升, 刘俊峰, 等. 固液态降水分离方法探讨[J]. 冰川冻土, 2010, 32(2):249-256.] [54] Chen Rensheng, Liu Junfeng, Song Yaoxuan. Precipitation type estimation and validation in China[J]. Journal of Mountain Science, 2014, 11(4):917-925. [55] Ding Baohong, Yang Kun, Qin Jun, et al. The dependence of precipitation types on surface elevation and meteorological conditions and its parameterization[J]. Journal of Hydrology, 2014, 513(11):154-163. [56] Liu Junfeng, Chen Rensheng. Discriminating types of precipitation in Qilian Mountains, Tibetan Plateau[J]. Journal of Hydrology:Regional Studies, 2016, 5:20-32. [57] Zhang Xueting, Li Xuemei, Gao Pei, et al. Separation of precipitation forms based on different methods in Tianshan mountainous area, Northwest China[J]. Journal of Glaciology and Geocryology, 2017, 39(2):235-244.[张雪婷, 李雪梅, 高培, 等. 基于不同方法的中国天山山区降水形态分离研究[J]. 冰川冻土, 2017, 39(2):235-244.] [58] Shea J M, Moore R D, Stahl K. Derivation of melt factors from glacier mass-balance records in western Canada[J]. Journal of Glaciology, 2009, 55(189):123-130. [59] Carenzo M, Pellicciotti F, Rimkus S, et al. Assessing the transferability and robustness of an enhanced temperature-index glacier-melt model[J]. Journal of Glaciology, 2009, 55(190):258-274. [60] Pellicciotti F, Buergi C, Immerzeel W W, et al. Challenges and uncertainties in hydrological modeling of remote Hindu Kush-Karakoram-Himalayan(HKH) basins:suggestions for calibration strategies[J]. Mountain Research and Development, 2012, 32(1):39-50. [61] Pellicciotti F, Helbing J, Rivera A, et al. A study of the energy balance and melt regime on Juncal Norte Glacier, semi-arid Andes of central Chile, using melt models of different complexity[J]. Hydrological Processes, 2008, 22(19):3980-3997. [62] Ragettli S, Pellicciotti F. Calibration of a physically-based, fully distributed hydrological model in a glacierized basin:on the use of knowledge from glacio-meteorological processes to constrain model parameters[J/OL]. Water Resources Research, 2012, 48(3)[2016-01-23]. http://onlinelibrary.wiley.com/doi/10.1029/2011WR010559/epdf. [63] Zhang Yong, Liu Shiyin, Ding Yongjian. Spatial variation of degree-day factors on the observed glaciers in western China[J]. Acta Geographica Sinica, 2006, 61(1):89-98.[张勇, 刘时银, 丁永建. 中国西部冰川度日因子的空间变化特征[J]. 地理学报, 2006, 61(1):89-98.] [64] Zhang Yong, Liu Shiyin, Shangguan Donghui, et al. Study of the positive degree-day factors on the Koxkar Baqi Glacier on the south slope of Tianshan Mountains[J]. Journal of Glaciology and Geocryology, 2005, 27(3):337-343.[张勇, 刘时银, 上官冬辉, 等. 天山南坡科其卡尔巴契冰川度日因子变化特征研究[J]. 冰川冻土, 2005, 27(3):337-343.] [65] Qiao Chengjun, He Xiaobo, Ye Baisheng. Study of the degree-day factors for snow and ice on the Dongkemadi Glacier, Tanggula Range[J]. Journal of Glaciology and Geocryology, 2010, 32(2):257-264.[谯程骏, 何晓波, 叶柏生. 唐古拉山冬克玛底冰川雪冰度日因子研究[J]. 冰川冻土, 2010, 32(2):257-264.] [66] Wu Qianru, Kang Shichang, Gao Tanguang, et al. The characteristics of the positive degree-day factors of the Zhadang Glacier on the Nyainq ntanglha Range of Tibetan Plateau, and its application[J]. Journal of Glaciology and Geocryology, 2010, 32(5):891-897.[吴倩如, 康世昌, 高坛光, 等. 青藏高原纳木错流域扎当冰川度日因子特征及其应用[J]. 冰川冻土, 2010, 32(5):891-897.] [67] Liu Weigang, Xiao Cunde, Liu Jingshi, et al. Study of the degree-day factors on the Rongbuk Glacier in the Mt. Qomolangma, Central Himalayas[J]. Journal of Glaciology and Geocryology, 2014, 36(5):1101-1110.[刘伟刚, 效存德, 刘景时, 等. 喜马拉雅山珠穆朗玛峰北坡绒布冰川度日因子研究[J]. 冰川冻土, 2014, 36(5):1101-1110.] [68] Cui Yuhuan, Ye Baisheng, Wang Jie, et al. Analysis of the spatial-temporal variations of the positive degree-day factors on the Glacier No.1 at the headwaters of the Vrümqi River[J]. Journal of Glaciology and Geocryology, 2010, 32(2):265-274.[崔玉环, 叶柏生, 王杰, 等. 乌鲁木齐河源1号冰川度日因子时空变化特征[J]. 冰川冻土, 2010, 32(2):265-274.] [69] Liu Shiyin, Ding Yongjian, Ye Baisheng, et al. Study on the mass balance of the Glacier No.1 at the headwaters of the Vrümqi River using degree-day method[C]//Proceedings of the Fifth Chinese Conference on Glaciology and Geocryology:vol 1. Lanzhou:Gansu Culture Press. 1996:197-204.[刘时银, 丁永建, 叶佰生, 等. 度日因子用于乌鲁木齐河源1号冰川物质平衡计算的研究[C]//第五届全国冰川冻土学大会论文集:上册. 兰州:甘肃文化出版社1996:197-204.] [70] Bhakta K R, Ageta Y, Nakawo M, et al. Positive degree-day factors for ice ablation on four glaciers in the Nepalese Himalayas and Qinghai-Tibetan Plateau[J]. Bulletin of Glaciological Research, 2003, 20:7-14. [71] Heynen M, Pellicciotti F, Carenzo M. Parameter sensitivity of a distributed enhanced temperature-index melt model[J]. Annals of Glaciology, 2013, 54(63):311-321. [72] Arce J P F. Melt, runoff and surface mass balance modelling in the tropical Andes using an enhanced temperature-index approach[D]. Sendai, Japan:Tohoku University, 2013. |
[1] | 路倩, 李宝富, 王志慧, 孙佳瑶, 仝天. 1979-2014年东北地区雪深时空变化与大气环流的关系[J]. 冰川冻土, 2018, 40(5): 907-915. |
[2] | 罗雪萍, 阿的鲁骥, 字洪标, 杨有芳, 陈焱, 代迪, 王长庭. 高寒草甸土壤微生物功能多样性对积雪变化的响应[J]. 冰川冻土, 2018, 40(5): 1016-1027. |
[3] | 刘金平, 张万昌, 邓财, 聂宁. 2000-2014年西藏雅鲁藏布江流域积雪时空变化分析及对气候的响应研究[J]. 冰川冻土, 2018, 40(4): 643-654. |
[4] | 陈志恒, 张杰, 徐玮平. 青藏高原初春积雪的多尺度变化与北大西洋海温的关系[J]. 冰川冻土, 2018, 40(4): 655-665. |
[5] | 韩涛, 王大为, 李丽丽. FY-3A/MERSI积雪制图中NDSI指标建立及积雪判识模型研究——以祁连山区为例[J]. 冰川冻土, 2018, 40(3): 511-527. |
[6] | 秦艳, 丁建丽, 赵求东, 刘永强, 马勇刚, 穆艾塔尔·赛地. 2001-2015年天山山区积雪时空变化及其与温度和降水的关系[J]. 冰川冻土, 2018, 40(2): 249-260. |
[7] | 刘世博, 臧淑英, 张丽娟, 那晓东, 孙丽, 李苗, 张晓闻. 东北冻土区积雪深度时空变化遥感分析[J]. 冰川冻土, 2018, 40(2): 261-269. |
[8] | 曹志, 范昊明. 我国东北低山区不同坡位积雪特性研究[J]. 冰川冻土, 2017, 39(5): 989-996. |
[9] | 卓越, 肖鹏峰, 冯学智, 张学良, 杨永可, 叶李灶, 李成蹊, 胡瑞, 卞国栋. 新疆阿勒泰克兰河中游地区冬季积雪分布及特性分析[J]. 冰川冻土, 2017, 39(5): 979-988. |
[10] | 高荣, 韦志刚, 钟海玲. 青藏高原陆表特征与中国夏季降水的关系研究[J]. 冰川冻土, 2017, 39(4): 741-747. |
[11] | 邱玉宝, 张欢, 除多, 张雪成, 于小淇, 郑照军. 基于MODIS的青藏高原逐日无云积雪产品算法[J]. 冰川冻土, 2017, 39(3): 515-526. |
[12] | 鲍伟佳, 刘时银, 吴坤鹏, 王荣军, 蒋宗立. 一种基于MODIS积雪产品的雪线高度提取方法[J]. 冰川冻土, 2017, 39(2): 259-272. |
[13] | 安红敏, 窦挺峰, 车涛, 效存德, 杜志恒. 北极巴罗地区海冰消融初期表面特征及光谱反射率观测研究[J]. 冰川冻土, 2017, 39(1): 35-42. |
[14] | 谷良雷, 姚济敏, 胡泽勇, 赵林. 藏北高原典型季节冻土区和多年冻土区小气候特征对比研究[J]. 冰川冻土, 2016, 38(6): 1482-1490. |
[15] | 李玉婷, 柳锦宝, 王增武, 巴桑, 肖垚. 2003-2012年四川省积雪时空动态变化与气候响应研究[J]. 冰川冻土, 2016, 38(6): 1491-1500. |
|
©2018 冰川冻土编辑部
电话:0931-8260767 E-mail: edjgg@lzb.ac.cn 邮编:730000