[1] Seinfeld J H, Pandis S N. Atmospheric chemistry and physics:from air pollution to climate change[M]. John Wiley & Sons, 2016. [2] Zhang Rui, Wang Zuwei, Yang Wen, et al. Advance on continuous measuring systems for water-soluble inorganic ions in atmospheric particles[J]. Enuivonmental Science and Technology, 2014, 37(8):59-64.[张蕊, 王祖伟, 杨文, 等. 气溶胶中水溶性无机离子连续监测研究进展[J]. 环境科学与技术, 2014, 37(8):59-64.] [3] Alexander L V. Climate change 2013:the physical science basis:summary for policymakers[M]. Intergovernmental Panel on Climate Change, 2014. [4] Dentener F J, Carmichael G R, Zhang Y, et al. Role of mineral aerosol as a reactive surface in the global troposphere[J]. Journal of Geophysical Research:Atmospheres, 1996, 101(D17):22869-22889. [5] Dentener F, Kinne S, Bond T, et al. Emissions of primary aerosol and precursor gases in the years 2000 and 1750 prescribed data-sets for AeroCom[J]. Atmospheric Chemistry and Physics, 2006, 6(12):4321-4344. [6] Ginoux P, Chin M, Tegen I, et al. Sources and distributions of dust aerosols simulated with the GOCART model[J]. Journal of Geophysical Research:Atmospheres, 2001, 106(D17):20255-20273. [7] McNaughton C S, Clarke A D, Kapustin V, et al. Observations of heterogeneous reactions between Asian pollution and mineral dust over the Eastern North Pacific during INTEX-B[J]. Atmospheric Chemistry and Physics, 2009, 9(21):8283-8308. [8] Usher C R, Michel A E, Grassian V H. Reactions on mineral dust[J]. Chemical Reviews, 2003, 103(12):4883-4940. [9] Kaspari S, McKenzie Skiles S, Delaney I, et al. Accelerated glacier melt on Snow Dome, Mount Olympus, Washington, USA, due to deposition of black carbon and mineral dust from wildfire[J]. Journal of Geophysical Research:Atmospheres, 2015, 120(7):2793-2807. [10] Wang X, Doherty S J, Warren S G, et al. Black carbon and other light-absorbing aerosols in snow[C]//AGU Fall Meeting 2011. San Francisco, California, USA, 2011. [11] Xu J, Wang Z, Yu G, et al. Characteristics of water soluble ionic species in fine particles from a high altitude site on the northern boundary of Tibetan Plateau:mixture of mineral dust and anthropogenic aerosol[J]. Atmospheric research, 2014, 143:43-56. [12] Xu J, Zhang Q, Wang Z, et al. Chemical composition and size distribution of summertime PM2.5 at a high altitude remote location in the northeast of the Qinghai-Xizang (Tibet) Plateau:insights into aerosol sources and processing in free troposphere[J]. Atmospheric Chemistry and Physics, 2015, 15(9):5069-5081. [13] Xu J, Wang Z, Yu G, et al. Seasonal and diurnal variations in aerosol concentrations at a high-altitude site on the northern boundary of Qinghai-Xizang Plateau[J]. Atmospheric research, 2013, 120:240-248. [14] Wang Zebin, Xu Jianzhong, Yu Guangming. The characteristics of soluble ions in PM2.5 aerosol over the Qilian Shan Station of glaciology and ecologic environment[J]. Journal of Glaciology and Geocryology, 2013, 35(2):336-344.[王泽斌, 徐建中, 余光明. 祁连山大雪山地区大气PM2.5细粒子中可溶性离子特征[J]. 冰川冻土, 2013, 35(2):336-344.] [15] Yao X, Lau A P S, Fang M, et al. Size distributions and formation of ionic species in atmospheric particulate pollutants in Beijing, China:1-inorganic ions[J]. Atmospheric Environment, 2003, 37(21):2991-3000. [16] Zhang Xiaopeng, Qin Xiang, Wu Jinkui, et al. Responses of glacier runoff to climate change in the Laohugou basin, Qilian Mountaions[J]. Journal of Glaciology and Geocryology, 2017, 39(1):148-155.[张晓鹏, 秦翔, 吴锦奎, 等. 祁连山老虎沟流域强消融期径流对气候变化的响应[J]. 冰川冻土, 2017, 39(1):148-155.] [17] Zhang Xueyan, Qin Xiang, Wu Jinkui, et al. Analysis of the characteristics of runoff yield and confluence in the Laohugou basin, Qilian Mountains[J]. Journal of Glaciology and Geocryology, 2017, 39(1):140-147.[张雪艳, 秦翔, 吴锦奎, 等. 祁连山老虎沟流域产汇流特征分析[J]. 冰川冻土, 2017, 39(1):140-147.] [18] Wang Yuzhe, Ren Jiawen, Qin Xiang, et al. Ice depth and glacier-bed characteristics of the Laohugou Glacier NO.12, Qilian Mountains, revealed by ground-penetrating radar[J]. Journal of Glaciology and Geocryology, 2016, 38(1):28-35.[王玉哲, 任贾文, 秦翔, 等. 祁连山老虎沟12号冰川雷达测厚和冰下地形特征研究[J]. 冰川冻土, 2016, 38(1):28-35.] [19] Zheng X. Salt lakes on the Inner Mongolian Plateau of China[J]. Chinese Geographical Science, 1991, 1(1):83-94. [20] Xue J, Yuan Z, Lau A K H, et al. Insights into factors affecting nitrate in PM2.5 in a polluted high NOx environment through hourly observations and size distribution measurements[J]. Journal of Geophysical Research:Atmospheres, 2014, 119(8):4888-4902. [21] Wang Hui, Chang Weimin, Yang Libo, et al. Size distribution of inorganic ions of atmospheric aerosols in Nanjing[J]. Research on Environmental Sciences, 2004, 17(6):12-14.[王荟, 常卫民, 杨丽波, 等. 南京市大气气溶胶中部分无机离子的粒径分布[J]. 环境科学研究, 2004, 17(6):12-14.] [22] Wu F, Zhang D, Cao J, et al. Soil-derived sulfate in atmospheric dust particles at Taklimakan Desert[J]. Geophysical Research Letters, 2012, 39(24). DOI:10.1029/2012GL054406. [23] Andreae M O, Merlet P. Emission of trace gases and aerosols from biomass burning[J]. Global Biogeochemical Cycles, 2001, 15(4):955-966. [24] Echalar F, Gaudichet A, Cachier H, et al. Aerosol emissions by tropical forest and savanna biomass burning:characteristic trace elements and fluxes[J]. Geophysical Research Letters, 1995, 22(22):3039-3042. |