[1] Zhang Shujuan, Lai Yuanming, Su Xinmin, et al. Laboratory simulation of rock damage propagation in a volcanic tunnel under freezing and thawing cycles[J]. Journal of Rock Mechanics and Engineering, 2004, 23(24):4105-4111.[张淑娟, 赖远明, 苏新民, 等. 风火山隧道冻融循环条件下岩石损伤扩展室内模拟研究[J]. 岩石力学与工程学报, 2004, 23(24):4105-4111.] [2] Yan Xidong, Liu Hongyan, Xing Chuangfeng, et al. Study on constitutive model of rock freezing thawing damage based on microcrack deformation and propagation[J]. Geotechnical Mechanics, 2015, 36(12):3489-3499.[阎锡东, 刘红岩, 邢闯锋, 等. 基于微裂隙变形与扩展的岩石冻融损伤本构模型研究[J]. 岩土力学, 2015, 36(12):3489-3499.] [3] Qi Jilin, Ma Wei. Mechanical properties and research status of frozen soil[J]. Geotechnical Mechanics, 2010, 31(1):133-143.[齐吉琳, 马巍. 冻土的力学性质及研究现状[J]. 岩土力学, 2010, 31(1):133-143.] [4] Kim S H, Burd H J, Milligan G W E. Model testing of closely spaced tunnels in clay[J]. Geotechnique, 1998, 48(3):375-388. [5] Su Wei, Leng Wuming, Lei Jinshan, et al. Experimental study on similar materials of rock mass[J]. Geotechnical Foundation, 2008, 22(5):73-75.[苏伟, 冷伍明, 雷金山, 等. 岩体相似材料试验研究[J]. 土工基础, 2008, 22(5):73-75.] [6] Prudencio M, Jan M V S. Strength and failure modes of rock mass models with non-persistent joints[J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(6):890-902. [7] Li Wenjie, Ge Yipeng, Zhang Fangfang. Experimental study on similar material proportioning based on similarity theory[J]. Journal of Luoyang Institute of Science and Technology, 2013, 23(1):7-12.[李文杰, 葛毅鹏, 张芳芳. 基于相似理论的相似材料配比试验研究[J]. 洛阳理工学院学报, 2013, 23(1):7-12.] [8] Zhang Huimei, Yang Gengshe. Tensile properties of rock under water and freezing thawing conditions[J]. Journal of Hunan University of Science and Technology, 2013, 28(3):35-40.[张慧梅, 杨更社. 水分及冻融环境下岩石抗拉力学特性[J]. 湖南科技大学学报, 2013, 28(3):35-40.] [9] Yan Xidong, Liu Hongyan, Xing Chuangfeng, et al. Study on variation law of rock elastic modulus under freezing and thawing cycles[J]. Geotechnical Mechanics, 2015, 36(8):2315-2322.[阎锡东, 刘红岩, 邢闯锋, 等. 冻融循环条件下岩石弹性模量变化规律研究[J]. 岩土力学, 2015, 36(8):2315-2322.] [10] Shen Yanjun, Yang Gengshe, Rong Tenglong, et al. Discussion on recommended test scheme of rock freezing thawing cycles[J]. Journal of Geotechnical Engineering, 2016, 38(10):1775-1782.[申艳军, 杨更社, 荣腾龙, 等. 岩石冻融循环试验建议性方案探讨[J]. 岩土工程学报, 2016, 38(10):1775-1782.] [11] Mao Xuesong, Hou Zhongjie, Wang Weina. Experimental study on modulus of resilience of remolded soil based on water content and freeze-thaw cycles[J]. Journal of Rock Mechanics and Engineering, 2009, 28(Suppl 2):3685-3590.[毛雪松, 侯仲杰, 王威娜. 基于含水量和冻融循环的重塑土回弹模量试验研究[J]. 岩石力学与工程学报, 2009, 28(增刊2):3685-3590.] [12] Xiao Donghui, Feng Wenjie, Zhang Ze, et al. Change law of porosity of loess under freezing and thawing cycles[J]. Journal of Glaciology and Geocryology, 2014, 36(4):907-912.[肖东辉, 冯文杰, 张泽. 冻融循环作用下黄土孔隙率变化规律[J]. 冰川冻土, 2014, 36(4):907-912.] [13] Hori M, Morihiro H. Micromechanical analysis on deterioration due to freezing and thawing in porous brittle materials[J]. International Journal of Engineering Science, 1998, 36(4):511-522. [14] Viklander P. Permeability and volume changes in till due to cyclic freeze/thaw[J]. Canadian Geotechnical Journal, 1998, 35(3):471-477. [15] Wang Yongyan, Zhu Yumeng, Fan Xiyan, et al. Experimental study on the influence of porosity on the destruction of similar shale materials[J]. Journal of Applied Mechanics, 2016, 33(4):695-700.[王永岩, 朱羽萌, 范夕燕, 等. 孔隙率对页岩相似材料破坏影响的试验研究[J]. 应用力学学报, 2016, 33(4):695-700.] [16] Zhang Ze, Zhou Hong, Qin Qi, et al. Experimental study on porosity characteristics of loess under freezing-thawing cycle[J]. Journal of Jilin University (Earth Science Edition), 2017, 47(3):839-847.[张泽, 周泓, 秦琦, 等. 冻融循环作用下黄土的孔隙特征试验[J]. 吉林大学学报(地球科学版), 2017, 47(3):839-847.] [17] Zheng Yun, Ma Wei, Bing Hui. Mechanism and quantitative method of influence of freeze-thaw cycles on soil structure[J]. Journal of Glaciology and Geocryology, 2015, 37(1):132-137.[郑郧, 马巍, 邴慧. 冻融循环对土结构性影响的机理与定量研究方法[J]. 冰川冻土, 2015, 37(1):132-137.] [18] Xu Guangmiao, Liu Quansheng. Mechanism analysis of rock freezing thawing damage and experimental study on freezing thawing mechanics[J]. Journal of Rock Mechanics and Engineering, 2005, 24(17):3076-3082.[徐光苗, 刘泉声. 岩石冻融破坏机理分析及冻融力学试验研究[J]. 岩石力学与工程学报, 2005, 24(17):3076-3082.] [19] Wen Lei, Li Xibing, Yin Yanbo, et al. Comparative analysis of physical and mechanical properties of granite porphyry and limestone under freezing and thawing cycles and their application[J]. Journal of Glaciology and Geocryology, 2014, 36(3):632-639.[闻磊, 李夕兵, 尹彦波, 等. 冻融循环作用下花岗斑岩和灰岩物理力学性质对比分析及应用研究[J]. 冰川冻土, 2014, 36(3):632-639.] [20] Liu Hongyan, Liu Ye, Xing Chuangfeng, et al. Experimental study on damage and failure of jointed rock mass under cyclic freezing and thawing[J]. Geotechnical Mechanics, 2014, 35(6):1547-1554.[刘红岩, 刘冶, 邢闯锋, 等. 循环冻融条件下节理岩体损伤破坏试验研究[J]. 岩土力学, 2014, 35(6):1547-1554.] [21] Li Zhaoyu, Zhang Bin. Experimental study on stress strain relationship of frozen expansive soil[J]. Journal of Glaciology and Geocryology, 2014, 36(4):902-906.[李兆宇, 张滨. 冻结膨胀土应力-应变关系试验研究[J]. 冰川冻土, 2014, 36(4):902-906.] [22] Lu Yingfa, Tian Bin, Huang Wenjie, et al. Experimental study on sandstone with large porosity[J]. Journal of Huazhong University of Science and Technology (Urban Science Edition), 2005, 22(2):56-58.[卢应发, 田斌, 黄文捷, 等. 大孔隙率砂岩的试验研究[J]. 华中科技大学学报(城市科学版), 2005, 22(2):56-58.] [23] Lu Hua, Wang Jianguo, Yang Jiqing, et al. Test on dynamic response of red sandstone with different porosities[J]. Journal of Engineering Blasting, 2016, 22(2):19-23.[陆华, 王建国, 杨继清, 等. 不同孔隙率红砂岩的动力响应特性试验[J]. 工程爆破, 2016, 22(2):19-23.] [24] Lu Jianguo, Zhang Mingyi, Zhang Xiyin, et al. Present situation and progress of coupled thermo hydro mechanical study of frozen soil[J]. Journal of Glaciology and Geocryology, 2017, 39(1):102-111.[路建国, 张明义, 张熙胤, 等. 冻土水热力耦合研究现状及进展[J]. 冰川冻土, 2017, 39(1):102-111.] |