[1] Jorgenson M T, Shur Y L, Pullman E R. Abrupt increase in permafrost degradation in Arctic Alaska[J]. Geophysical Research Letters, 2006, 33(2):L02503. [2] Frey K E, Siegel D I, Smith L C. Geochemistry of west Siberian streams and their potential response to permafrost degradation[J]. Water Resources Research, 2007, 43(3):W03406. [3] Yi Shuhua, Zhou Zhaoye, Ren Shilong, et al. Effects of permafrost degradation on alpine grassland in a semi-arid basin on the Qinghai-Tibetan Plateau[J]. Environmental Research Letters, 2011, 6:045403. [4] Yang Meixue, Wang Shaoling, Yao Tandong, et al. Desertification and its relationship with permafrost degradation in Qinghai-Xizang (Tibet) Plateau[J]. Cold Regions Science and Technology, 2004, 39(1):47-53. [5] Molina-Montenegro M, Oses R, Atala C, et al. Nurse effect and soil microorganisms are key to improve the establishment of native plants in a semiarid community[J]. Journal of Arid Environments, 2016, 126:56-61. [6] Zhang Gaosen, Niu Fujun, Ma Xiaofei, et al. Phylogenetic diversity of bacteria isolates from the Qinghai-Tibet Plateau permafrost region[J]. Canadian Journal of Microbiology, 2007, 53(8):1000-1010. [7] Ding Hongwei, Zhao Cheng, Huang Xiaohui. Ecological environment and desertification in Shulehe River basin[J]. Arid Zone Research, 2001, 18(2):5-10.[丁宏伟, 赵成, 黄晓辉. 疏勒河流域的生态环境与沙漠化[J]. 干旱区研究, 2001, 18(2):5-10.] [8] Chen Shengyun, Liu Wenjie, Ye Baisheng, et al. Species diversity of vegetation in relation to biomass and environmental factors in the upper area of the Shule River[J]. Acta Prataculturae Sinica, 2011, 20(3):71-83.[陈生云, 刘文杰, 叶柏生, 等. 疏勒河上游地区植被物种多样性和生物量及其与环境因子的关系[J]. 草业学报, 2011, 20(3):71-83.] [9] Yang Xiuli, Zhang Baogui, Zhang Wei, et al. Characteristics of culturable bacterial community in rhizosphere soil of Achnatherum splendens Trin in the upper reaches of the Shule River, Qilian Mountains[J]. Journal of Glaciology and Geocryology, 2014, 36(1):222-229.[杨秀丽, 张宝贵, 张威, 等. 祁连山疏勒河上游芨芨草根际可培养细菌群落特征研究[J]. 冰川冻土, 2014, 36(1):222-229.] [10] Sun Xike, Zhou Lihua, Chen Yong. The adaptive countermeasures against climate change in Shulehe River basin, China[J]. Journal of Desert Research, 2011, 31(5):1316-1322.[孙希科, 周立华, 陈勇. 疏勒河流域气候变化情境下的适应对策[J]. 中国沙漠, 2011, 31(5):1316-1322.] [11] Cheng Guodong, Wang Shaoling. On the zonation of high-altitude permafrost in China[J]. Journal of Glaciology and Geocryology, 1982, 2(4):1-17.[程国栋, 王邵令. 试论中国高海拔多年冻土带的划分[J]. 冰川冻土, 1982, 2(4):1-17.] [12] Chen Wei, Zhang Wei, Li Shiweng, et al. Features of soil cultivable microorganism quantity and diversity distribution under different alpine grassland ecosystems in Qinghai-Tibet Plateau[J]. Journal of Glaciology and Geocryology, 2011, 33(6):1419-1426.[陈伟, 张威, 李师翁, 等. 青藏高原不同类型草地生态系统下土壤可培养细菌数量及多样性分布特征研究[J]. 冰川冻土, 2011, 33(6):1419-1426.] [13] Yue Jun, Liu Guangxiu, Zhang Gaosen, et al. Changes in soil properties and cluturable bacteria diversity in Zhadang Glacier forland[J]. Journal of Glaciology and Geocryology, 2010, 32(6):1180-1185.[岳君, 刘光琇, 章高森, 等. 念青唐古拉山扎当冰川退缩前沿土壤性质与可培养细菌多样性变化[J]. 冰川冻土, 2010, 32(6):1180-1185.] [14] Zhang Baogui, Zhang Wei, Liu Guangxiu, et al. Effect of freeze-thaw cycles on soil bacterial communities under different ecosystems in Qinghai-Tibet Plateau[J]. Journal of Glaciology and Geocryology, 2012, 34(6):1499-1507.[张宝贵, 张威, 刘光琇, 等. 冻融循环对青藏高原腹地不同生态系统土壤细菌群落结构的影响[J]. 冰川冻土, 2012, 34(6):1499-1507.] [15] Li Changming, Zhang Xinfan, Zhao Lin, et al. Phylogenetic diversity of bacteria isolates and community function in permafrost-affected soil along different vegetation types in the Qinghai-Tibet Plateau[J]. Journal of Glaciology and Geocryology, 2012, 34(3):713-725.[李昌明, 张新芳, 赵林, 等. 青藏高原多年冻土区土壤需氧可培养细菌多样性及群落功能研究[J]. 冰川冻土, 2012, 34(3):713-725.] [16] Zhang Gaosen, Ma Xiaojun, Niu Fujun, et al. Diversity and distribution of alkaliphilic psychrotolerant bacteria in the Qinghai-Tibet Plateau permafrost region[J]. Extremophiles, 2007, 11(3):415-424. [17] Mao Wenliang, Tai Xisheng, Wu Xiukun, et al. Altitudinal variation characteristics of the cultivable soil bacterial community on the upper reaches of the Heihe River, Qilian Mountains[J]. Journal of Glaciology and Geocryology, 2013, 35(2):447-456.[毛文梁, 台喜生, 伍修琨, 等. 黑河上游祁连山区土壤可培养细菌群落生境的垂直分异特征[J]. 冰川冻土, 2013, 35(2):447-456.] [18] Aislabie J M, Broady P A, Saul D J. Culturable aerobic heterotrophic bacteria from high altitude, high latitude soil of La Gorce Mountains (86°30' S, 147° W), Antarctica[J]. Antartic Science, 2006, 18(3):313-321. [19] Hansen A A, Herbert R A, Mikkelsen K, et al. Viability, diversity and composition of the bacterial community in a high Arctic permafrost soil from Spitsbergen, Northern Norway[J]. Environmental Microbiology, 2007, 9(11):2870-2884. [20] Zhang Binglin, Wu Xiukun, Zhang Gaosen, et al. The diversity and biogeography of the communities of Actinobacteria in the forelands of glaciers at a continental scale[J]. Environmental Research Letters, 2016, 11:054012. [21] Brown M E. Seed and root bacterization[J]. Annual Review of Phytopathology, 1974, 12:181-197. [22] Sims G K, Sommers L E, Konopka A. Degradation of pyridine by micrococcus luteus isolated from soil[J]. Applied and Environmental Microbiology, 1986, 51(5):963-968. [23] Greenblat C L, Baum J, Klein B Y, et al. Micrococcus luteus-Survival in Amber[J]. Microbial Ecology, 2004, 48(1):120-127. [24] Hu Jie, He Xiaohong, Li Daping, et al. Progress in research of Sphingomonas[J]. Chinese Journal of Applied and Environmental Biology, 2007, 13(3):431-437. [25] Jetten M S. New pathways for ammonia conversion in soil and aquatic systems[J]. Plant and Soil, 2001, 230:9-19. [26] Zhou Lixiang, Huang Fengyuan, Wang Shimei. Isolation of aerobic denitrifiers and their roles in soil nitrogen transformation[J]. Acta Pedologica Sinica, 2006, 43(3):430-435. [27] Zhang Xinfang, Xu Shijian, Li Changming, et al. The soil carbon/nitrogen ratio and moisture affect microbial community structures in alkaline permafrost-affected soils with different vegetation types on the Tibetan Plateau[J]. Research in microbiology, 2014, 165(2):128-139. [28] Zhang Xinfnag, Zhao Lin, Xu Shijian, et al. Soil moisture effect on bacterial and fungal community in Beilu River (Tibetan Plateau) permafrost soils with different vegetation types[J]. Journal of applied microbiology, 2013, 114:1054-1065. [29] Wang Lu, Dong Xiaopei, Zhang Wei, et al. Quantitative characteristics of microorganisms in permafrost at different depths and their relation to soil physicochemical properties[J]. Journal of Glaciology and Geocryology, 2011, 33(2):436-441.[王鹭, 董小培, 张威, 等. 不同深度冻土微生物数量特征及其与土壤理化性质的关系[J]. 冰川冻土, 2011, 33(2):436-441.] [30] Fell J W, Scorzetti G, Connell L, et al. Biodiversity of micro-eukaryotes in Antarctic Dry Valley soils with <5% soil moisture[J]. Soil Biology and Biochemistry, 2006, 38(10):3107-3119. [31] Bridge P D, Newsham K K. Soil fungal community composition at Mars Oasis, a southern maritime Antarctic site, assessed by PCR amplification and cloning[J]. Fungal Ecology, 2009, 2(2):66-74. [32] Glanville H C, Hill P W, Maccarone L D, et al. Temperature and water controls on vegetation emergence, microbial dynamics, and soil carbon and nitrogen fluxes in a high Arctic tundra ecosystem[J]. Functional Ecology, 2012, 26(6):1366-1380. [33] Steven B, Lionard M, Kuske C R, et al. High bacterial diversity of biological soil crusts in water tracks over permafrost in the high arctic polar desert[J]. PloS One, 2013, 8(8):e71489. [34] Hu Ping, Wu Xiukun, Li Shiweng, et al. Progress of studies on permafrost microbial ecology in the past 10 years[J]. Journal of Glaciology and Geocryology, 2012, 34(3):732-739.[胡平, 伍修锟, 李师翁, 等. 近10 a来冻土微生物生态学研究进展[J]. 冰川冻土, 2012, 34(3):732-739.] [35] Wang Genxu, Li Yuanshou, Wang Qingbo, et al. Effects of permafrost thawing on vegetation and soil carbon pool losses on the Qinghai-Tibet Plateau, China[J]. Geoderma, 2008, 143(1/2):143-152. [36] Geng Yan, Wang Yonghui, Yang Kuo, et al. Soil respiration in Tibetan alpine grasslands:belowground biomass and soil moisture, but not soil temperature, best explain the large-scale patterns[J]. PLoS One, 2012, 7(4):e34968. [37] Liebner S, Harder J, Wagner D. Bacterial diversity and community structure in polygonal tundra soils from Samoylov Island, Lena Delta, Siberia[J]. International Microbiology:Official Journal of the Spanish Society for Microbiology, 2008, 11(3):195-202. [38] Nakatsubo T, Bekku Y S, Uchida M, et al. Ecosystem development and carbon cycle on a glacier foreland in the high Arctic, Ny-lesund, Svalbard[J]. Journal of Plant Research, 2005, 18(3):173-179. [39] Ganzert L, Lipski A, Hubberten H W, et al. The impact of different soil parameters on the community structure of dominant bacteria from nine different soils located on Livingston Island, South Shetland Archipelago, Antarctica[J]. Microbiology Ecology, 2011, 76(3):476-491. [40] Baumann F, He J, Schmidt K, et al. Pedogenesis, permafrost, and soil moisture as controlling factors for soil nitrogen and carbon contents across the Tibetan Plateau[J]. Global Change Biology, 2009, 15(2):3001-3017. [41] Ramirez K, Craine J, Fierer N. Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes[J]. Global Change Biology, 2012, 18(6):1918-1927. [42] Bardgett R D, Freeman C, Ostle N J. Microbial contributions to climate change through carbon cycle feedbacks[J]. The ISME Journal, 2008, 2:805-814. [43] He Zhili, Piceno Y, Deng Ye, et al. The phylogenetic composition and structure of soil microbial communities shifts in response to elevated carbon dioxide[J]. The ISME Journal, 2012, 6:259-272. [44] Feng Youzhi, Grogan P, Caporaso J G, et al. pH is a good predictor of the distribution of anoxygenic purple phototrophic bacteria in Arctic soils[J]. Soil Biology and Biochemistry, 2014, 74:193-200. [45] Frey S D, Lee J, Melillo J M, et al. The temperature response of soil microbial efficiency and its feedback to climate[J]. Nature Climate Change, 2013, 3:395-398. [46] Siciliano S D, Palmer A S, Winsley T, et al. Soil fertility is associated with fungal and bacterial richness, whereas pH is associated with community composition in polar soil microbial communities[J]. Soil Biology and Biochemistry, 2014, 78:10-20. |