[1] Puswewala U G A. Computational modelling of structure-frozen soil/ice interaction[D]. Winnipeg, Manitoba, Canada:University of Manitoba, 1991:20-58. [2] Parameswaran V R. Adfreeze strength of frozen sand to model piles[J]. Canadian Geotechnical Journal, 1978, 15(4):494-500. [3] Qiu Mingguo, Li Haishan, Wang Ke, et al. Experimental study on failure pattern of piles in frozen soils[J]. Journal of Harbin University of Civil Engineering and Architecture, 1999, 32(5):39-42.[邱明国, 李海山, 王珂, 等. 冻土中桩破坏模式的试验研究[J]. 哈尔滨建筑大学学报, 1999, 32(5):39-42.] [4] Lu Xianlong. Model test of the foundation pile under pulling load in permafrost area[J]. Mine Construction Technology, 2012, 33(6):17-21.[鲁先龙. 上拔荷载作用下冻土地基混凝土单桩模型试验[J]. 建井技术, 2012, 33(6):17-21.] [5] Zhang Xiaodong, Xu Xueyan, Zhang Erqi. Study on the mechanism of the bearing capacity of cone pile higher than square pile's in frozen soil[J]. Low Temperature Architecture Technology, 2001(2):59-60.[张小冬, 徐学燕, 张尔齐. 冻土中锥形桩承载力高于方形桩机理研究[J]. 低温建筑技术, 2001(2):59-60.] [6] Wang Jianzhou, Li Shengsheng, Zhou Guoqing, et al. Analysis of bearing capacity of pile foundation in high temperature permafrost regions with permafrost table descending[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(10):4226-4232.[王建州, 李生生, 周国庆, 等. 冻土上限下移条件下高温冻土桩基承载力分析[J]. 岩土力学与工程学报, 2006, 25(10):4226-4232.] [7] Andersland O B, Ladanyi B. Frozen ground engineering[M]. Hoboken, New Jersey, USA:Wiley, 2004. [8] Wang Renhe, Wang Wei, Chen Yongfeng. Model experimental study on compressive bearing capacity of single pile in frozen soil[J]. Journal of Glaciology and Geocryology, 2005, 27(2):188-193.[王仁和, 王伟, 陈永锋. 冻土中单桩抗压承载力模型试验研究[J]. 冰川冻土, 2005, 27(2):188-193.] [9] Cheng Yongfeng, Lu Xianlong, Liu Huaqing, et al. Model test study on pile foundation of 110 kV transmission line of Qinghai-Tibet Railway in frozen soils[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(1):4378-4382.[程永峰, 鲁先龙, 刘华清, 等. 青藏铁路110 kV输电线路冻土桩基模型试验研究[J]. 岩石力学与工程学报, 2004, 23(1):4378-4382.] [10] Duan X, Nterer G F. Heat conduction with seasonal freezing and thawing in an active layer near a tower foundation[J]. International Journal of Heat and Mass Transfer, 2009, 52(7/8):2068-2078. [11] Zhang Guolin, Guan Xiaojun. Study on frost-recovery after construction of pile foundation in cold plateau region[J]. Railway Engineering, 2007(3):30-32.[张国林, 管晓军. 高寒地区桩基施工回冻研究[J]. 铁道建筑, 2007(3):30-32.] [12] Li G Y, Yu Q H, Ma W, et al. Impacts of permafrost mean annual ground temperature and ice content on thermal regime of pile foundation of Qinghai-Tibet Power Transmission Line[J]. Advanced Materials Research, 2013, 610/611/612/613:2832-2839. [13] Subasi A, Yilmaz A S, Binci H. Prediction of early heat of hydration of plain and blended cements using neuro-fuzzy modeling techniques[J]. Expert Systems with Applications, 2009, 36(1):4940-4950. [14] Cheng Peifeng, Ji Cheng. Monitoring and data analysis of pile foundation temperature field in permafrost regions[J]. Low Temperature Architecture Technology, 2015, 37(6):117-119.[程培峰, 季成. 多年冻土区桩基温度场监测及数据分析[J]. 低温建筑技术, 2015, 37(6):117-119.] [15] Tang Liyun, Yang Gengshe, Rang Yanyan, et al. Effects of cement hydration heat on pile foundation in permafrost regions[J]. Journal of Xi'an University of Science and Technology, 2011, 31(1):28-32.[唐丽云, 杨更社, 让艳艳, 等. 水化热对冻土地区桩基热影响分析[J]. 西安科技大学学报, 2011, 31(1):28-32.] [16] Chen Zhaoyu, Li Guoyu, Yu Qihao, et al. Study of the thermal stability of cast-in-place pile foundations of the Qinghai-Tibet DC Transmission Project in permafrost regions[J]. Journal of Glaciology and Geocryology, 2013, 35(5):1209-1218.[陈赵育, 李国玉, 俞祁浩, 等. 青藏直流联网工程多年冻土区砼灌注桩基础长期热稳定性预测研究[J]. 冰川冻土, 2013, 35(5):1209-1218.] [17] Xiong Wei, Liu Minggui, Zhang Qiheng, et al. Temperature distribution along piles in permafrost regions[J]. Rock and Soil Mechanics, 2009, 30(6):1658-1664.[熊炜, 刘明贵, 张启衡, 等. 多年冻土区桩基温度场研究[J]. 岩土力学, 2009, 30(6):1658-1664.] [18] Lin Yongquan, Wen Ziyun. Ready-mixed iced concrete and its temperature control[J]. Concrete, 2004(8):50-52.[林永权, 文梓芸. 预拌加冰混凝土及其温度控制[J]. 混凝土, 2004(8):50-52.] [19] Chen Zhaoyu, Li Guoyu, Mu Yanhu, et al. Impact of molding temperature and hydration heat of concrete on thermal properties of pile foundation in permafrost regions along the Qinghai-Tibet DC Transmission Line[J]. Journal of Glaciology and Geocryology, 2014, 36(4):818-827.[陈赵育, 李国玉, 穆彦虎, 等. 混凝土的入模温度和水化热对青藏直流输电线路冻土桩基温度特性的影响[J]. 冰川冻土, 2014, 36(4):818-827.] [20] Jia Yanmin, Tian Haiqi, Guo Hongyu. Refrozen process of cast-in-piles considering the influence of molding temperature and hydration heat[J]. Engineering Mechanics, 2011, 28(Suppl I):44-47.[贾艳敏, 田海旗, 郭红雨. 水化热及入模温度对灌注桩回冻过程影响的研究[J]. 工程力学, 2011, 28(增刊I):44-47.] [21] Yu Q H, Zhang Z Q, Wang G S, et al. Analysis of tower foundation stability along the Qinghai-Tibet Power Transmission Line and impact of the route on the permafrost[J]. Cold Regions Science and Technology, 2015, 121:205-213. [22] Ceng Chengxian. Analysis of refrozen of bored pile in permafrost region[D]. Harbin:Northeast Forestry University, 2005:28-31.[岑成贤. 多年冻土地区钻孔灌注桩回冻分析[D]. 哈尔滨:东北林业大学, 2005:28-31.] [23] Esch D C, Osterkamp T E. Cold regions engineering:climate warming concerns for Alaska[J]. Journal of Cold Regions Engineering, 1990, 4(1):6-14. [24] Jin Huijun, Li Shuxun, Wang Shaoling, et al. Impacts of climatic changes on permafrost and cold regions environments in China[J]. Acta Geographica Sinica, 2000, 55(2):161-173.[金会军, 李述训, 王绍令, 等. 气候变化对中国多年冻土和寒区环境的影响[J]. 地理学报, 2000, 55(2):161-173.] [25] Jin H J, Yu Q H, Wang S L, et al. Changes in permafrost environments along the Qinghai-Tibet engineering corridor induced by anthropogenic activities and climate warming[J]. Cold Regions Science and Technology, 2008, 53(3):317-333. [26] IPCC. Climate change 2007:the AR4 synthesis report[R]. Geneva, Switzerland:IPCC, 2007. [27] Chen Zhaoyu, Li Guoyu, Mu Yanhu, et al. Thermal stability of fabricated foundations with different warming patterns in permafrost regions[J]. China Earthquake Engineering Journal, 2013, 35(4):877-884.[陈赵育, 李国玉, 穆彦虎, 等. 不同升温模式下冻土地区装配式基础热稳定性研究[J]. 地震工程学报, 2013, 35(4):877-884.] [28] Mu Yanhu, Li Guoyu, Yu Qihao, et al. Numerical simulation of heat transfer processes of cone-cylinder pipe and cooling effects of thermosyphon along the Qinghai-Tibet DC Interconnection Project[J]. Journal of Glaciology and Geocryology, 2014, 36(1):106-117.[穆彦虎, 李国玉, 俞祁浩, 等. 热管措施下锥柱式桩基础传热过程及降温效果预测研究[J]. 冰川冻土, 2014, 36(1):106-117.] [29] Li G Y, Yu Q H, Ma W, et al. Freeze-thaw properties and long-term thermal stability of the unprotected tower foundation soils in permafrost regions along the Qinghai-Tibet Power Transmission Line[J]. Cold Regions Science and Technology, 2015, 121:258-274. [30] Johnston G H. Bench marks in permafrost areas[J]. Canadian Surveyor, 1962, 16(1):32-41. [31] Grigor'ev V S, Ol'shanskii V G, Starostenkovc A D, et al. Experience in 110-500 kV overhead transmission line construction and renovation projects in the northern regions of western Siberia[J]. Power Technology and Engineering, 2012, 46(4):317-320. [32] Olson M E. Synthetic insulation in arctic roadway embankment[C]//Proceedings of the 3rd International Cold Regions Engineering Specialty Conference. Montreal, Canada:Canadian Society of Civil Engineering, 1984:739-752. [33] Cheng G D, Zhang J M, Sheng Y, et al. Principle of thermal insulation for permafrost protection[J]. Cold Regions Science and Technology, 2004, 40:71-79. [34] Wen Zhi, Sheng Yu, Ma Wei, et al. Long-term effect of insulation on permafrost on the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2006, 28(5):760-765.[温智, 盛煜, 马巍, 等. 保温法保护多年冻土的长期效果分析[J]. 冰川冻土, 2006, 28(5):760-765.] [35] Wen Zhi, Sheng Yu, Ma Wei, et al. In situ experimental study on thermal protection effects of the insulation method on warm permafrost[J]. Cold Regions Science and Technology, 2008, 53:369-381. [36] Duan X, Naterer G F. Heat transfer in a tower foundation with ground surface insulation and periodic freezing and thawing[J]. International Journal of Heat and Mass Transfer, 2010, 53:2369-2376. [37] Reid R L, Evans A L. Investigation of the air convection pile as a permafrost protection device[C]//Proceedings of the 4th International Conference on Permafrost. Washington, D.C.:National Academy Press, 1983:1048-1053. [38] Dunn P D, Reay D A. Heat pipes[M]. 3rd ed. Oxford, UK:Pergamon Press, 1994. [39] Noie S H. Heat transfer characteristics of a two-phase closed thermosyphon[J]. Applied Thermal Engineering, 2005, 25:495-506. [40] Mu Y H, Li G Y, Yu Q H, et al. Numerical study of long-term cooling effects of thermosyphons around tower footings in permafrost regions along the Qinghai-Tibet Power Transmission Line[J]. Cold Regions Science and Technology, 2015, 121:237-249. [41] Guo L, Yu Q H, Yu Y H, et al. Cooling effects of thermosyphons in tower foundation soils in permafrost regions along the Qinghai-Tibet Power Transmission Line from Golmud, Qinghai Province to Lhasa, Tibet Autonomous Region, China[J]. Cold Regions Science and Technology, 2015, 121:196-204. [42] Mu Y H, Wang G S, Yu Q H, et al. Thermal performance of a combined cooling method of thermosyphons and insulation boards for tower foundation soils along the Qinghai-Tibet[J]. Cold Regions Science and Technology, 2015, 121:226-236. [43] French H M. The periglacial environment[M]. 3rd ed. Chichester, England, UK:Wiley, 2007:94-101. [44] Lyazgin A L, Bayasan R M, Chisnik S A, et al. Stabilization of pile foundations subjected to frost heave and in thawing permafrost[C]//Proceedings of the 8th International Conference on Permafrost. Lisse, the Netherlands:Swets & Zeitlinger, 2003:707-711. |