[1] Wommack K E, Colwell R R. Virioplankton:viruses in aquatic ecosystems[J]. Microbiology and Molecular Biology Reviews, 2000, 64(1):69-114. [2] Cárcer D A D, López-Bueno A, Pearce D A, et al. Biodiversity and distribution of polar freshwater DNA viruses[J/OL]. Science Advances, 2015, 1(5)[2018-04-05]. http://advances.sciencemag.org/content/1/5/e1400127.full. [3] Filippini M, Buesing N, Gessner M O. Temporal dynamics of freshwater bacterio-and virioplankton along a littoral-pelagic gradient[J]. Freshwater Biology, 2008, 53(6):1114-1125. [4] Thurber R V. Current insights into phage biodiversity and biogeography[J]. Current Opinion in Microbiology, 2009, 12(5):582-587. [5] Fortier L C, Sekulovic O. Importance of prophages to evolution and virulence of bacterial pathogens[J]. Virulence, 2013, 4(5):354-365. [6] Zhong Xu, Ram A S P, Colombet J, et al. Variations in abundance, genome size, morphology, and functional role of the virioplankton in lakes Annecy and Bourget over a 1-year period[J]. Microbial Ecology, 2014, 67(1):66-82. [7] Thomas R, Berdjeb L, Simengando T, et al. Viral abundance, production, decay rates and life strategies (lysogeny versus lysis) in lake Bourget (France)[J]. Environmental Microbiology, 2011, 13(3):616-630. [8] Suttle C A. Marine viruses-major players in the global ecosystem[J]. Nature Reviews Microbiology, 2007, 5(10):801-812. [9] Weinbauer M G, Rassoulzadegan F. Are viruses driving microbial diversification and diversity?[J]. Environmental Microbiology, 2004, 6(1):1-11. [10] Sime-Ngando T, Colombet J. Virus and prophages in aquatic ecosystems[J]. Canadian Journal of Microbiology, 2009, 55(2):95-109. [11] Hambly E, Suttle C A. The viriosphere, diversity, and genetic exchange within phage communities[J]. Current Opinion in Microbiology, 2005, 8(4):444-450. [12] Meunier A, Jacquet S. Do phages impact microbial dynamics, prokaryotic community structure and nutrient dynamics in Lake Bourget?[J]. Biology Open, 2015, 4(11):1528-1537. [13] López-Bueno A, Tamames J, Velázquez D, et al. High diversity of the viral community from an Antarctic lake[J]. Science, 2009, 326(5954):858-861. [14] Säwström C, Lisle J, Anesio A M, et al. Bacteriophage in polar inland waters[J]. Extremophiles, 2008, 12(2):167-175. [15] Liu Yongqin, Priscu J C, Yao Tandong, et al. A comparison of pelagic, littoral, and riverine bacterial assemblages in lake Bangongco, Tibetan Plateau[J]. FEMS Microbiology Ecology, 2014, 89(2):211-221. [16] Sommaruga R. The role of solar UV radiation in the ecology of alpine lakes[J]. Journal of Photochemistry and Photobiology B:Biology, 2001, 62(1/2):35-42. [17] Laybourn-Parry J, Hofer J S, Sommaruga R. Viruses in the plankton of freshwater and saline Antarctic lakes[J]. Freshwater Biology, 2001, 46(9):1279-1287. [18] Madan N J, Marshall W A, Laybourn-Parry J. Virus and microbial loop dynamics over an annual cycle in three contrasting Antarctic lakes[J]. Freshwater Biology, 2005, 50(8):1291-1300. [19] Säwström C, Anesio M A, Granéli W, et al. Seasonal viral loop dynamics in two large ultraoligotrophic Antarctic freshwater lakes[J]. Microbial Ecology, 2007, 53(1):1-11. [20] Säwström C, Pearce I, Davidson A T, et al. Influence of environmental conditions, bacterial activity and viability on the viral component in 10 Antarctic lakes[J]. FEMS Microbiology Ecology, 2008, 63(1):12-22. [21] Filippova S N, Surgucheva N A, Sorokin V V, et al. Bacteriophages in Arctic and Antarctic low-temperature systems[J]. Microbiology, 2016, 85(3):359-366. [22] Zhang Rui, Wei Wei, Cai Lanlan. The fate and biogeochemical cycling of viral elements[J]. Nature Reviews Microbiology, 2014, 12(12):850-851. [23] Yau S, Colwell R R. Virophage control of Antarctic algal host-virus dynamics[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(15):6163-6168. [24] Laybourn-Parry J, Marshall W A, Madan N J. Viral dynamics and patterns of lysogeny in saline Antarctic lakes[J]. Polar Biology, 2006, 30(3):351-358. [25] Colombet J, Charpin M, Robin A, et al. Seasonal depth-related gradients in virioplankton:standing stock and relationships with microbial communities in Lake Pavin (France)[J]. Microbial Ecology, 2009, 58(4):728-736. [26] Lymer D, Lindstrom E S. Changing phosphorus concentration and subsequent prophage induction alter composition of a freshwater viral assemblage[J]. Freshwater Biology, 2010, 55(9):1984-1996. [27] Lymer D, Logue J B, Brussaard C P D, et al. Temporal variation in freshwater viral and bacterial community composition[J]. Freshwater Biology, 2008, 53(6):1163-1175. [28] Laybourn-Parry J, Anesio A M, Madan N, et al. Virus dynamics in a large epishelf lake (Beaver lake, Antarctica)[J]. Freshwater Biology, 2013, 58(7):1484-1493. [29] Säwström C, Laybourn-Parry J, Granéli W, et al. Heterotrophic bacterial and viral dynamics in Arctic freshwaters:results from a field study and nutrient-temperature manipulation experiments[J]. Polar Biology, 2007, 30(11):1407-1415. [30] Säwström C, Ask J, Karlsson J. Viruses in subarctic lakes and their impact on benthic and pelagic bacteria[J]. FEMS Microbiology Ecology, 2009, 70(3):471-482. [31] Lymer D, Lindstrom E S, Vrede K. Variable importance of viral-induced bacterial mortality along gradients of trophic status and humic content in lakes[J]. Freshwater Biology, 2008, 53(6):1101-1113. [32] Drewes F, Peter H, Sommaruga R. Are viruses important in the plankton of highly turbid glacier-fed lakes?[J/OL]. Scientific Reports, 2016, 6[2018-04-05]. https://www.nature.com/articles/srep24608. [33] Hofer J S, Sommaruga R. Seasonal dynamics of viruses in an alpine lake:importance of filamentous forms[J]. Aquatic Microbial Ecology, 2001, 26(1):1-11. [34] Säwström C, Granéli W, Laybourn-Parry J, et al. High viral infection rates in Antarctic and Arctic bacterioplankton[J]. Environmental Microbiology, 2007, 9(1):250-255. [35] Laybourn-Parry J, Madan N J, Marshall W A, et al. Carbon dynamics in an ultra-oligotrophic epishelf lake (Beaver Lake, Antarctica) in summer[J]. Freshwater Biology, 2006, 51(6):1116-1130. [36] Wilson W H, Lane D, Pearce D A, et al. Transmission electron microscope analysis of virus-like particles in the freshwater lakes of Signy Island, Antarctica[J]. Polar Biology, 2000, 23(9):657-660. [37] Lisle J T, Priscu J C. The occurrence of lysogenic bacteria and microbial aggregates in the lakes of the McMurdo Dry Valleys, Antarctica[J]. Microbial Ecology, 2004, 47(4):427-439. [38] Jepner R L, Wharton R A, Suttle C A. Viruses in Antarctic lakes[J]. Limnology and Oceanography, 1998, 43(7):1754-1761. [39] Maurice C F, Bouvier T, Comte J, et al. Seasonal variations of phage life strategies and bacterial physiological states in three northern temperate lakes[J]. Environmental Microbiology, 2010, 12(3):628-641. [40] Lu Ting, Liang Xiaobing, Zeng Jia, et al. Distribution patterns and related affecting factors of bacterial and viral abundance in lake of Guizhou Table[J]. Chinese Journal of Ecology, 2009, 28(10):1996-2001.[陆婷, 梁小冰, 曾佳, 等. 贵州高原湖泊细菌和病毒分布特征及影响因素[J]. 生态学杂志, 2009, 28(10):1996-2001.] [41] Butina T V, Belykh O I, Potapov S A, et al. Diversity of the major capsid genes (g23) of T4-like bacteriophages in the eutrophic lake Kotokel in East Siberia, Russia[J]. Archives of Microbiology, 2013, 195(7):513-520. [42] Clasen J L, Brigden S M, Payet J P, et al. Evidence that viral abundance across oceans and lakes is driven by different biological factors[J]. Freshwater Biology, 2008, 53(6):1090-1100. [43] Weinbauer M G. Ecology of prokaryotic viruses[J]. FEMS Microbiology Reviews, 2004, 28(2):127-181. [44] Liu Xiyong. Genetic diversity of T4-like virioplankton in altiplano lakes of Yunnan Province[D]. Wuhan:Central China Normal University, 2011.[刘西永. 云南高原湖泊T4类浮游病毒遗传多样性研究[D]. 武汉:华中师范大学, 2011.] [45] Lymer D, Vrede K. Nutrient additions resulting in phage release and formation of non-nucleoid-containing bacteria[J]. Aquatic Microbial Ecology, 2006, 43(2):107-112. [46] Anderson M J, Ford R B, Feary D A, et al. Quantitative measures of sedimentation in an estuarine system and its relationship with intertidal soft-sediment infauna[J]. Marine Ecology Progress, 2004, 272(1):33-48. [47] Jansson M, Hickler T, Jonsson A, et al. Links between terrestrial primary production and bacterial production and respiration in lakes in a climate gradient in subarctic Sweden[J]. Ecosystems, 2008, 11(3):367-376. [48] Anesio A M, Bellas C M. Are low temperature habitats hot spots of microbial evolution driven by viruses?[J]. Trends in Microbiology, 2011, 19(2):52-57. [49] Hewson I, Chow C, Fuhrman J A. Ecological role of viruses in aquatic ecosystems[M]. Hoboken, NJ, USA:Wiley, 2010. [50] Mei M L, Danovaro R. Virus production and life strategies in aquatic sediments[J]. Limnology and Oceanography, 2004, 49(2):459-470. [51] Karlsson J, Jonsson A, Jansson M. Bacterioplankton production in lakes along an altitude gradient in the subarctic north of Sweden[J]. Microbial Ecology, 2001, 42(3):372-382. [52] Yager P L, Connelly T L, Mortazavi B, et al. Dynamic bacterial and viral response to an algal bloom at subzero temperatures[J]. Limnology and Oceanography, 2001, 46(4):790-801. [53] Bettarel Y, Simengando T, Amblard C, et al. Viral activity in two contrasting lake ecosystems[J]. Applied and Environmental Microbiology, 2004, 70(5):2941-2951. [54] Thingstad T F. Elements of a theory for the mechanisms controlling abundance, diversity, and biogeochemical role of lytic bacterial viruses in aquatic systems[J]. Limnology and Oceanography, 2000, 45(6):1320-1328. [55] Ochman H, Lawrence J G, Groisman E A. Lateral gene transfer and the nature of bacterial innovation[J]. Nature, 2000, 405(6784):299-304. [56] Fuhrman J, Suttle C A. Viruses in marine planktonic systems[J]. Oceanography, 1993, 6(2):51-63. [57] Dinsdale E A, Edwards R A, Hall D, et al. Functional metagenomic profiling of nine biomes[J]. Nature, 2008, 452(7187):629-632. [58] Sullivan M B, Coleman M L, Weigele P, et al. Three prochlorococcus cyanophage genomes:signature features and ecological interpretations[J/OL]. PLOS Biology, 2005, 3(5)[2018-04-05]. https://www.ncbi.nlm.nih.gov/pubmed/15828858. [59] Breitbart M, Hoare A, Nitti A, et al. Metagenomic and stable isotopic analyses of modern freshwater microbialites in Cuatro Ci negas, Mexico[J]. Environmental Microbiology, 2009, 11(1):16-34. [60] Jacquet S, Miki T, Noble R, et al. Viruses in aquatic ecosystems:important advancements of the last 20 years and prospects for the future in the field of microbial oceanography and limnology[J]. Advances in Oceanography and Limnology, 2010, 1(1):97-141. [61] Azam F, Fenchel T, Field J G, et al. The ecological role of water column microbes in the sea[J]. Marine Ecology Progress, 1983, 10(3):257-263. [62] Säwström C. Viral loop dynamics in temperate and polar freshwaters[D]. Lund, Sweden:Department of Ecology, Lund University, 2006. [63] Ory P, Hartmann H J, Jude F, et al. Pelagic food web patterns:do they modulate virus and nanoflagellate effects on picoplankton during the phytoplankton spring bloom?[J]. Environmental Microbiology, 2010, 12(10):2755-2772. [64] Fuhrman J A. Marine viruses and their biogeochemical and ecological effects[J]. Nature, 1999, 399(6736):541-548. [65] Chénard C, Lauro F M. Microbial ecology of extreme environments[M]. Berlin:Springer, 2017. [66] Miki T, Nakazawa T, Yokokawa T, et al. Functional consequences of viral impacts on bacterial communities:a food-web model analysis[J]. Freshwater Biology, 2008, 53(6):1142-1153. [67] Wang Liyan, Xiao Yi, Jiang Ling, et al. Assessment and analysis of the freeze-thaw erosion sensitivity on the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2017, 39(1):61-69.[王莉雁, 肖燚, 江凌, 等. 青藏高原冻融侵蚀敏感性评价与分析[J]. 冰川冻土, 2017, 39(1):61-69.] [68] Lu Meimei, Zhou Shiqiao, He Xia. A comparison of the formulas for estimation of the lake evaporation on the Tibetan Plateau:taking Lake Nam Co as an example[J]. Journal of Glaciology and Geocryology, 2017, 39(2):281-291.[陆美美, 周石硚, 何霞. 青藏高原湖泊蒸发估算方法的比较研究:以纳木错为例[J]. 冰川冻土, 2017, 39(2):281-291.] |