[1] He Haidi, Li Zhongqin, Wang Puyu, et al. Variations characteristics of glacier mass balance in Svalbard[J]. Journal of Glaciology and Geocryology, 2017, 39(4):701-709.[何海迪, 李忠勤, 王璞玉, 等. 近50年来北极斯瓦尔巴岛地区物质平衡变化特征[J]. 冰川冻土, 2017, 39(4):701-709.] [2] Qin Dahe, Zhou Botao, Xiao Cunde. Progress in studies of cryospheric change and their impacts on climate of China[J]. Acta Meteorologica Sinica, 2014, 72(5):869-879.[秦大河, 周波涛, 效存德. 冰冻圈变化及其对中国气候的影响[J]. 气象学报, 2014, 72(5):869-879.] [3] Oerlemans J. Quantifying global warming from the retreat of glaciers[M]. Science, 1994, 26(5156):243-245. [4] Wang Puyu, Li Zhongqin, Li Huilin, et al. Comparison of glaciological and geodetic mass balance at Vrümqi Glacier No. 1, Tian Shan, Central Asia[J]. Global and Planetary Change, 2014, 114(469):14-22. [5] Huss M, Farinotti D. Distributed ice thickness and volume of all glaciers around the globe[J]. Journal of Geophysical Research, 2012, 117(117):1-10. [6] Dyurgerov M B, Meier M F. Twentieth century climate change:evidence from small glaciers[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(4):1406-1411. [7] Kaser G. Glacier-climate interaction at low latitude[J]. Journal of Glaciology, 2001, 47(157):195-204. [8] Barry R G. The status of research on glaciers and global glacier recession:a review[J]. Progress in Physical Geography, 2006, 30(3):285-306. [9] Solomon S, Qin Dahe, Manning M, et al. The physical science basis[M]. Canada:Intergovernmental Panel on Climate Change 2007, 2007:235-337. [10] Wang Puyu, Li Zhongqin, Li HuIlin, et al. Analysis of the relation between glacier volume change and area change in the Tianshan Mountains[J]. Journal of Glaciology and Geocryology, 2017, 39(1):9-15.[王璞玉, 李忠勤, 李慧琳, 等. 天山冰储量变化和面积变化关系分析研究[J]. 冰川冻土, 2017, 39(1):9-15.] [11] Zemp M, Hoelzle M, Haeberli W. Six decades of glacier mass-balance observations:a review of the worldwide monitoring network[J]. Annals of Glaciology, 2009, 50(50):101-111. [12] Arendt A A, Echelmeyer K A, Harrison W D, et al. Rapid wastage of Alaska glaciers and their contribution to rising sea level[J]. Science, 2002, 297(5580):382-386. [13] Ye Wanhua, Wang Feiteng, Li Zhongqin, et al. Temporal and spatial distributions of the equilibrium line altitudes of the monitoring glaciers in High Asian[J]. Journal of Glaciology and Geocryology, 2016, 38(6):1459-1469.[叶万花, 王飞腾, 李忠勤, 等. 高亚洲定位监测冰川平衡线高度时空分布特征研究[J]. 冰川冻土, 2016, 38(6):1459-1469.] [14] Thibert E, Eckert N, Vincent C. Climatic drivers of seasonal glacier mass balances:an analysis of 6 decades at Glacier de Sarennes (French Alps)[J]. Cryosphere, 2013, 7(1):47-66. [15] Wang Puyu, Li Zhongqin, Li Huilin, et al. Characteristics of a partially debris-covered glacier and its response to atmospheric warming in Mt. Tomor, Tien Shan, China[J]. Global and Planetary Change, 2017, 159(1):11-24. [16] Xie Zichu, Liu Chaohai. Introduction to glaciology[M]. Shanghai:Shanghai Popular Science Press, 2010.[谢自楚, 刘潮海. 冰川学导论[M]. 上海:上海科学普及出版社, 2010.] [17] Xu Chunhai, Li Zhongqin, Wang Feiteng, et al. Estimation of mass balance of Shiyi Glacier in the Heihe River basin, Qilian Mountains during 2000-2012 Based on LiDAR and SRTM[J]. Journal of Natural Resources, 2017, 32(1):88-100.[徐春海, 李忠勤, 王飞腾, 等. 基于LiDAR、SRTM DEM的祁连山黑河流域十一冰川2000-2012年物质平衡估算[J]. 自然资源学报, 2017, 32(1):88-100.] [18] Wang Sheng, Pu Jianchen, Wang Ningliang. Study of mass balance and sensibility to climate change of Qiyi Glacier in Qilian Mountains[J]. Journal of Glaciology and Geocryology, 2011, 33(6):1214-1221.[王盛, 蒲健辰, 王宁练. 祁连山七一冰川物质平衡及其对气候变化的敏感性研究[J]. 冰川冻土, 2011, 33(6):1214-1221.] [19] Du Jiankuo, He Yuanqing, Li Shuang, et al. Mass balance of a typical monsoonal temperate glacier in Hengduan Mountains region[J]. Acta Geographica Sinica, 2015, 70(9):1415-1422.[杜建括, 何元庆, 李双, 等. 横断山区典型海洋型冰川物质平衡研究[J]. 地理学报, 2015, 70(9):1415-1422.] [20] Zhang Jian, He Xiaobo, Ye Baisheng, et al. Recent variation of mass balance of the Xiao Dongkemadi Glacier in the Tanggula Range and its influencing factors[J]. Journal of Glaciology and Geocryology, 2013, 35(2):263-271.[张健, 何晓波, 叶柏生, 等. 近期小冬克玛底冰川物质平衡变化及其影响因素分析[J]. 冰川冻土, 2013, 35(2):263-271.] [21] Pu Hongzheng, Han Tianding, Li Xiangying, et al. Characteristics of the altitude-dependent mass balance and their impact runoff of the Glacier No.1 at the headwaters of the Vrümqi River, Tianshan Mountains[J]. Journal of Glaciology and Geocryology, 2014, 36(5):1251-1259.[蒲红铮, 韩添丁, 李向应, 等. 天山乌鲁木齐河源1号冰川物质平衡高度变化特征及其对径流的影响[J]. 冰川冻土, 2014, 36(5):1251-1259.] [22] Xie Zichu, Ding Liangfu. Glacier mass balance in High Asia and it's respond to climate change[J]. Journal of Glaciology and Geocryology, 1996, 18(Suppl 1):4-11.[谢自楚, 丁良福. 高亚洲冰川物质平衡及其对气候变化的响应研究[J]. 冰川冻土, 1996, 18(增刊1):4-11.] [23] Xie Zichu, Zhou Zaigen, Li Qiaoyuan, et al. Progress and prospects of mass balance characteristic and responding to global change of glacier system in High Asia[J]. Advances in Earth Science, 2009, 24(10):1065-1072.[谢自楚, 周宰根, 李巧媛, 等. 高亚洲冰川系统物质平衡特征及其对全球变化响应研究进展与展望[J]. 地球科学进展, 2009, 24(10):1065-1072.] [24] Kang Ersi. Characteristics of energy balance and computation on the mass balance change of the High-Asia cryosphere[J]. Journal of Glaciology and Geocryology, 1996, 18(Suppl 1):12-22.[康尔泗. 高亚洲冰冻圈能量平衡特征和物质平衡变化计算研究[J].冰川冻土, 1996, 18(增刊1):12-22.] [25] Ding Yongjian, Liu Shiyin, Zhou Wenjuan, et al. Variations of glacier mass balance and their climatic implication[J]. Advances in Earth Science, 1996, 11(6):590-596.[丁永建, 刘时银, 周文娟, 等. 北半球冰川物质平衡变化的若干特征及其气候意义[J].地球科学进展, 1996, 11(6):590-596.] [26] Cao Meisheng. Abrupt changes in glacier mass balance over northern hemisphere[J]. Journal of Glaciology and Geocryology, 1999, 21(3):249-252.[曹梅盛. 北半球冰川物质平衡的突变[J]. 冰川冻土, 1999, 21(3):249-252.] [27] Li Zhongqin. The recent studies and applications of Vrümqi Glacier No.1, Tianshan Mountains, China[M]. Beijing:China Meteorological Press, 2011.[李忠勤. 天山乌鲁木齐河源1号冰川近期研究与应用[M]. 北京:气象出版社, 2011.] [28] Radi Dc' V, Hock R. Regional and global volumes of glaciers derived from statistical upscaling of glacier inventory data[J]. Journal of Geophysical Research Earth Surface, 2010, 115(F1):87-105. [29] Zemp M, Frey H, Gärtnerroer I, et al. Historically unprecedented global glacier decline in the early 21st Century[J]. Journal of Glaciology, 2015, 61(228):745-762. [30] Pfeffer W T, Arendt A A, Bliss A, et al. The Randolph Glacier inventory:a globally complete inventory of glaciers[J]. Journal of Glaciology, 2014, 60(221):537-552. [31] Qin Dahe, Plattner G K, Tignor M, et al. Climate change 2013:The physical science basis[M]. Cambridge:Cambridge University Press, 2013. [32] Tianshan Glaciological Station. Annual report of Tianshan Glaciological Station:volume 1~18[R]. Lanzhou:Tianshan Glaciological Station, 2008.[天山冰川站. 天山冰川站年报:1~18卷. 兰州:中国科学院天山站, 2008.] [33] World Glacier Monitoring Service(WGMS). Fluctuations of glaciers Vol.1~10[R]. Switzerland:Department of Geography University of Zurich, 2013. [34] World Glacier Monitoring Service (WGMS). Glacier mass balance bulletin No.1~11[R]. Switzerland:Department of Geography University of Zurich, 2013. [35] Su Bo, Li Zhongqin, Zhang Mingjun, et al. A comparative study on mass balance between the continental glaciers and the temperate glaciers:taking the typical glaciers in the Tianshan Mountains and the Alps as examples[J]. Journal of Glaciology and Geocryology, 2015, 37(5):1131-1140.[苏勃, 李忠勤, 张明军, 等. 大陆型冰川与海洋型冰川物质平衡对比研究——以天山和阿尔卑斯山典型冰川为例[J]. 冰川冻土, 2015, 37(5):1131-1140.] [36] Zhang Guofei. Study on mass balance and its relationship with climate change of Vrümqi Glacier No. 1 in Tianshan Mountains, China[D]. Lanzhou:Northwest Normal University, 2014.[张国飞. 中国天山乌鲁木齐河源1号冰川物质平衡及其与气候变化关系研究[D]. 兰州:西北师范大学, 2014.] [37] Stokes C R, Gurney S D, Shahgedanova M, et al. Late-20th-century changes in glacier extent in the Caucasus Mountains, Russia/Georgia[J]. Journal of Glaciology, 2006, 52(176):99-109. [38] Stokes C R, Popovnin V, Aleynikov A, et al. Recent glacier retreat in the Caucasus Mountains, Russia, and associated increase in supraglacial debris cover and supra-/proglacial lake development[J]. Annals of Glaciology, 2007, 46(1):195-203. [39] Shahgedanova M, Nosenko G, Khromova T, et al. Glacier shrinkage and climatic change in the Russian Altai from the mid-20th Century:an assessment using remote sensing and PRECIS regional climate model[J]. Journal of Geophysical Research Atmospheres, 2010, 115(D16):751-763. [40] Bown F, Rivera A, Acu a C. Recent glacier variations at the Aconcagua basin, central Chilean Andes[J]. Annals of Glaciology, 2008, 48(6):43-48. [41] Francou B, Vuille M, Wagnon P, et al. Tropical climate change recorded by a glacier in the central Andes during the last decades of the Twentieth Century:Chacaltaya, Bolivia, 16 S[J]. Journal of Geophysical Research:Atmospheres, 2003, 108(D5):1-12. [42] Salzmann N, Huggel C, Rohrer M, et al. Glacier changes and climate trends derived from multiple sources in the data scarce Cordillera Vilcanota region, southern Peruvian Andes[J]. Cryosphere, 2013, 7(1):103-118. [43] Pohjola V A, Rogers J C. Atmospheric circulation and variations in Scandinavian glacier mass balance[J]. Quaternary Research, 1997, 47(1):29-36. [44] Paul F, Andreassen L M. A new glacier inventory for the Svartisen region, Norway, from Landsat ETM+ data:challenges and change assessment[J]. Journal of Glaciology, 2009, 55(192):607-618. [45] Andreassen L M, Kj llmoen B, Rasmussen A, et al. Langfjordj kelen, a rapidly shrinking glacier in northern Norway[J]. Journal of Glaciology, 2012, 58(209):581-593. [46] Nesje A, Dahl S O, Thun T, et al. The ‘Little Ice Age’ glacial expansion in western Scandinavia:summer temperature or winter precipitation?[J]. Climate Dynamics, 2008, 30(7/8):789-801. [47] Huss M, Funk M, Ohmura A. Strong Alpine glacier melt in the 1940s due to enhanced solar radiation[J]. Geophysical Research Letters, 2009, 36(23):845-878. [48] Carturan L, Baroni C, Brunetti M, et al. Analysis of the mass balance time series of glaciers in the Italian Alps[J]. The Cryosphere, 2016, 10(2):695-712. [49] Gabbi J, Huss M, Bauder A, et al. The impact of Saharan dust and black carbon on albedo and long-term mass balance of an Alpine glacier[J]. The Cryosphere, 2015, 9(4):1385-1400. [50] Arendt A A. Assessing the status of Alaska's glaciers[J]. Science, 2011, 332(6033):1044-1045. [51] Cox L H, March R S. Comparison of geodetic and glaciological mass-balance techniques, Gulkana Glacier, Alaska, USA[J]. Journal of Glaciology, 2004, 50(170):363-370. [52] Pelto M S. Glacier annual balance measurement, forecasting and climate correlations, North Cascades, Washington 1984-2006[J]. The Cryosphere, 2008, 2(1):13-21. [53] Surazakov A B, Aizen V B, Aizen E M, et al. Glacier changes in the Siberian Altai Mountains, Ob River basin, (1952-2006) estimated with high resolution imagery[J]. Environmental Research Letters, 2007, 2(4):1-7. [54] Narozhniy Y, Zemtsov V. Current state of the Altai glaciers (Russia) and trends over the period of instrumental observations 1952-2008[J]. Ambio, 2011, 40(6):575-588. [55] Shepherd A, Wingham D. Recent sea-level contributions of the Antarctic and Greenland ice sheets[J]. Science, 2007, 315(5818):1529-1532. [56] Shepherd A, Zhijun D U, Benham T J, et al. Mass balance of Devon Ice Cap, Canadian Arctic[J]. Annals of Glaciology, 2007, 46(1):249-254. [57] Gardner A S, Sharp M. Influence of the Arctic circumpolar vortex on the mass balance of Canadian high Arctic glaciers[J]. Journal of Climate, 2007, 20(18):4586-4598. [58] Ruman C J, Sushama L, Winger K. Retreating Canadian glaciers and their implications for regional climate and hydrology in future climate[C]//EGU General Assembly Conference Abstracts. 2017, 19:1663. [59] Pelto M S. Impact of climate change on north cascade Alpine glaciers, and Alpine runoff[J]. Northwest Science, 2016, 82(1):65-75. [60] Criscitiello A S, Kelly M A, Tremblay B. The response of Taku and Lemon Creek glaciers to climate[J]. Arctic, Antarctic, and Alpine Research, 2010, 42(1):34-44. [61] Moore R D, Demuth M N. Mass balance and streamflow variability at Place Glacier, Canada, in relation to recent climate fluctuations[J]. Hydrological Processes, 2001, 15(18):3473-3486. [62] Takeuchi N, Li Z. Characteristics of surface dust on Vrümqi Glacier No. 1 in the Tien Shan Mountains, China[J]. Arctic, Antarctic, and Alpine Research, 2008, 40(4):744-750. [63] Li Zhongqin, Li Huilin, Chen Yaning. Mechanisms and simulation of accelerated shrinkage of continental glaciers:a case study of Vrümqi Glacier No. 1 in eastern Tianshan, central Asia[J]. Journal of Earth Science, 2011, 22(4):423-430. [64] Kononova N K, Pimankina N V, Yeriskovskaya L A, et al. Effects of atmospheric circulation on summertime precipitation variability and glacier mass balance over the Tuyuksu Glacier in Tianshan Mountains, Kazakhstan[J]. Journal of Arid Land, 2015, 7(5):687-695. [65] Dyurgerov M B, Mikhalenko V N, Kunakhovitch M G, et al. Simultaneous monitoring of mass balance fluctuations of and runoff from Tien Shan glaciers[J]. Annals of Glaciology, 1991, 16(8):134-134. [66] Mernild S H, Hanna E, Yde J C, et al. Atmospheric and oceanic influence on mass balance of northern North Atlantic region land-terminating glaciers[J]. Geografiska Annaler, 2015, 96(4):561-577. [67] Hanssen-Bauer I, Achberger C, Benestad R E, et al. Statistical downscaling of climate scenarios over Scandinavia:a review[J]. Climate Research, 2005, 29(3):255-268. |