冰川冻土 ›› 2018, Vol. 40 ›› Issue (3): 434-447.doi: 10.7522/j.issn.1000-0240.2018.0049
肖菁, 刘耕年, 聂振宇, 陈艺鑫, 彭旭, 刘蓓蓓, 韩业松, 崔之久
收稿日期:
2017-06-13
修回日期:
2017-12-10
出版日期:
2018-06-25
发布日期:
2018-07-16
通讯作者:
刘耕年,E-mail:Liugn@pku.edu.cn
E-mail:Liugn@pku.edu.cn
作者简介:
肖菁(1993-),女,北京人,2015年在北京大学获学士学位,现为北京大学在读硕士研究生,从事冰川地貌学研究.E-mail:xiaojingcues@pku.edu.cn
基金资助:
XIAO Jing, LIU Gengnian, NIE Zhenyu, CHEN Yixin, PENG Xu, LIU Beibei, HAN Yesong, CUI Zhijiu
Received:
2017-06-13
Revised:
2017-12-10
Online:
2018-06-25
Published:
2018-07-16
摘要: 依据天山7个有确切年代学资料的典型地区进行冰川面积和平衡线高度等重建,揭示天山地区末次冰期以来冰川经历的扩张和收缩过程。冰川规模在MIS 4~MIS 3大幅度扩张,形成大规模的复合型山谷冰川和山麓冰川;MIS 2冰川扩张显著,但远不及MIS 4~MIS 3,许多山区形成大型山谷冰川;全新世新冰期NG和小冰期LIA都略有扩张,冰碛垄分布在现代冰川外围,冰川类型与现在一致。冰川平衡线高度的降幅亦表现为MIS 4~MIS 3最大,MIS 2以后降幅递减。MIS 4~MIS 3天山冰川大规模扩张与欧亚冰盖演化,巨大冰前湖泊、广阔的湿地的形成为西风提供更多水气带到天山有关;MIS 2至今,随着欧亚冰盖减小到消失,西风带来的水气渐少,干冷的蒙古高压逐渐加强,制约了冰川规模扩张。
中图分类号:
肖菁, 刘耕年, 聂振宇, 陈艺鑫, 彭旭, 刘蓓蓓, 韩业松, 崔之久. 天山末次冰期以来干旱化过程的冰川证据[J]. 冰川冻土, 2018, 40(3): 434-447.
XIAO Jing, LIU Gengnian, NIE Zhenyu, CHEN Yixin, PENG Xu, LIU Beibei, HAN Yesong, CUI Zhijiu. Glacial evidence of aridification in the Tianshan Mountains since Last Glacial[J]. JOURNAL OF GLACIOLOGY AND GEOCRYOLOGY, 2018, 40(3): 434-447.
[1] Shi Yafeng. The Quaternary glaciations and environmental variations in China[M]. Shijiazhuang:Hebei Science and Technology Press, 2006.[施雅风. 中国第四纪冰川与环境变化[M]. 石家庄:河北科学技术出版社, 2006.] [2] Blomdin R, Stroeven A P, Harbor J M, et al. Evaluating the timing of former glacier expansions in the Tian Shan:a key step towards robust spatial correlations[J]. Quaternary Science Reviews, 2016, 153:78-96. [3] Chen Yixin, Li Yingkui, Wang Yueyan, et al. Late Quaternary glacial history of the Karlik Range, easternmost Tian Shan, derived from 10Be surface exposure and optically stimulated luminescence datings[J]. Quaternary Science Reviews, 2015, 115:17-27. [4] Kong P, Fink D, Na C G, et al. Late Quaternary glaciation of the Tianshan, Central Asia, using cosmogenic 10Be surface exposure dating[J]. Quaternary Research, 2009, 72(2):229-233. [5] Koppes M, Gillespie A R, Burke R M, et al. Late Quaternary glaciation in the Kyrgyz Tien Shan[J]. Quaternary Science Reviews, 2008, 27(7/8):846-866. [6] Li Yingkui, Liu Gengnian, Kong Ping, et al. Cosmogenic nuclide constraints on glacial chronology in the source area of the Vrümqi River, Tian Shan, China[J]. Journal of Quaternary Science, 2011, 26(3):297-304. [7] Li Yingkui, Liu Gengnian, Chen Yixin, et al. Timing and extent of Quaternary glaciations in the Tianger Range, eastern Tian Shan, China, investigated using 10Be surface exposure dating[J]. Quaternary Science Reviews, 2014, 98:7-23. [8] Li Yanan, Li Yingkui, Harbor J, et al. Cosmogenic 10Be constraints on Little Ice Age glacial advances in the eastern Tian Shan, China[J]. Quaternary Science Reviews, 2016, 138:105-118. [9] Lifton N, Beel C, Hättestrand C, et al. Constraints on the late Quaternary glacial history of the Inylchek and Sary-Dzaz valleys from in situ cosmogenic 10Be and 26Al, eastern Kyrgyz Tian Shan[J]. Quaternary Science Reviews, 2014, 101:77-90. [10] Narama C, Kondo R, Tsukamoto S, et al. OSL dating of glacial deposits during the Last Glacial in the Terskey-Alatoo Range, Kyrgyz Republic[J]. Quaternary Geochronology, 2007, 2(1/2/3/4):249-254. [11] Narama C, Kondo R, Tsukamoto S, et al. Timing of glacier expansion during the Last Glacial in the inner Tien Shan, Kyrgyz Republic by OSL dating[J]. Quaternary International, 2009, 199(1/2):147-156. [12] Yi Chaolu, Liu Kexin, Cui Zhijiu, et al. AMS radiocarbon dating of late Quaternary glacial landforms, source of the Vrümqi River, Tien Shan:a pilot study of 14C dating on inorganic carbon[J]. Quaternary International, 2004, 121(1):99-107. [13] Zhang Mei, Chen Yixin, Li Yingkui, et al. Late Quaternary glacial history of the Nalati Range, central Tian Shan, China, investigated using 10Be surface exposure dating[J]. Journal of Quaternary Science, 2016, 31(7):659-670. [14] Zhao Jingdong, Zhou Shangzhe, He Yuanqing, et al. ESR dating of glacial tills and glaciations in the Vrümqi River headwaters, Tianshan Mountains, China[J]. Quaternary International, 2006, 144(1):61-67. [15] Zhao Jingdong, Lai Zhongping, Liu Shiyin, et al. OSL and ESR dating of glacial deposits and its implications for glacial landform evolution in the Bogda Peak area, Tian Shan Range, China[J]. Quaternary Geochronology, 2012, 10:237-243. [16] Liu Shiyin, Ding Yongjian, Ye Baisheng, et al. Regional characteristics of glacier mass balance variations in High Asia[J]. Journal of Glaciology and Geocryology, 2000, 22(2):97-105.[刘时银, 丁永建, 叶柏生, 等. 高亚洲地区冰川物质平衡变化特征研究[J]. 冰川冻土, 2000, 22(2):97-105.] [17] Shen Yongping, Liu Shiyin, Ding Yongjian, et al. Glacier mass balance change in Tailanhe River watersheds on the south slope of the Tianshan Mountains and its impact on water resources[J]. Journal of Glaciology and Geocryology, 2003, 25(2):124-129.[沈永平, 刘时银, 丁永建, 等. 天山南坡台兰河流域冰川物质平衡变化及其对径流的影响[J]. 冰川冻土, 2003, 25(2):124-129.] [18] Su Zhen, Zhao Jingdong, Zheng Benxing. Distribution and features of the glaciers' ELAs and the decrease of ELAs during the Last Glaciation in China[J]. Journal of Glaciology and Geocryology, 2014, 36(1):9-19.[苏珍, 赵井东, 郑本兴. 中国现代冰川平衡线分布特征与末次冰期平衡线下降值研究[J]. 冰川冻土, 2014, 36(1):9-19.] [19] Wang Ninglian, He Jianqiao, Pu Jianchen, et al. Variations in equilibrium line altitude of the Qiyi Glacier, Qilian Mountains, over the past 50 years[J]. Chinese Science Bulletin, 2010, 55(33):3810-3817.[王宁练, 贺建桥, 蒲健辰, 等. 近50年来祁连山七一冰川平衡线高度变化研究[J]. 科学通报, 2010, 55(32):3107-3115.] [20] Ye Wanhua, Wang Feiteng, Li Zhongqin, et al. Temporal and spatial distributions of the equilibrium line altitudes of the monitoring glaciers in High Asia[J]. Journal of Glaciology and Geocryology, 2016, 38(6):1459-1469.[叶万花, 王飞腾, 李忠勤, 等. 高亚洲定位监测冰川平衡线高度时空分布特征研究[J]. 冰川冻土, 2016, 38(6):1459-1469.] [21] Benn D I, Lehmkuhl F. Mass balance and equilibrium-line altitudes of glaciers in high-mountain environments[J]. Quaternary International, 2000, 65:15-29. [22] Benn D I, Owen L A, Osmaston H A, et al. Reconstruction of equilibrium-line altitudes for tropical and sub-tropical glaciers[J]. Quaternary International, 2005, 138:8-21. [23] Liu Gengnian, Li Yingkui, Chen Yixin, et al. Glacial landform chronology and environment reconstruction of Peiku Gangri, Himalayas[J]. Journal of Glaciology and Geocryology, 2011, 33(5):959-970.[刘耕年, 李英奎, 陈艺鑫, 等. 喜马拉雅山佩枯岗日冰川地貌的年代学,平衡线高度和气候研究[J]. 冰川冻土, 2011, 33(5):959-970.] [24] Wu Chuanyong, Wu Guodong, Shen Jun, et al. The Late-Quaternary activity of the Nalati fault and its implications for the crustal deformation in the interior of the Tianshan Mountains[J]. Quaternary Sciences, 2014, 34(2):269-280.[吴传勇, 吴国栋, 沈军, 等. 那拉提断裂晚第四纪活动及其反映的天山内部构造变形[J]. 第四纪研究, 2014, 34(2):269-280.] [25] Zhang Peizhen, Wang Min, Gan Weijun, et al. Slip rates along major active faults from GPS measurements and constraints on contemporary continental tectonics[J]. Earth Science Frontiers, 2003, 10(Suppl 1):81-92.[张培震, 王敏, 甘卫军, 等. GPS观测的活动断裂滑动速率及其对现今大陆动力作用的制约[J]. 地学前缘, 2003, 10(增刊1):81-92.] [26] Zhou Demin. Characteristics of present-day crustal deformation and seismic hazard analysis in the western and central Tian Shan[D]. Beijing:Institute of Geology, China Earthquake Administration, 2013.[周德敏. 中西天山现今构造形变特征分析与地震危险性分析[D]. 北京:中国地震局地质研究所, 2013.] [27] Yang Shaomin, Li Jie, Wang Qi. The deformation pattern and fault rate in the Tianshan Mountains inferred from GPS observations[J]. Science in China:Series D Earth Sciences, 2008, 51(8):1064-1080.[杨少敏, 李杰, 王琪. GPS研究天山现今变形与断层活动[J]. 中国科学:D辑地球科学, 2008, 38(7):872-880.] [28] Cao Jinzhou. Fission track dating on apatite in the southern margin of Junggar Basin and its tectonic implication[J]. Journal of Northwest University (Natural Science Edition), 2009, 39(4):649-655.[曹金舟. 准噶尔南缘磷灰石裂变径迹定年及其构造意义[J]. 西北大学学报(自然科学版), 2009, 39(4):649-655.] [29] Lü Honghua, Chang Yuan, Wang Wei, et al. Rapid exhumation of the Tianshan Mountains since the early Miocene:evidence from combined apatite fission track and (U-Th)/He thermochronology[J]. Science in China:Series D Earth Sciences, 2013, 56(12):2116-2125.[吕红华, 常远, 王玮, 等. 天山中新世早期快速剥露:磷灰石裂变径迹与(U-Th)/He低温热年代学证据[J]. 中国科学:D辑地球科学, 2013, 43(12):1964-1974.] [30] Wang Lining, Ji Jianqing, Sun Dongxia, et al. The uplift history of south-western Tianshan-Implications from AFT analysis of detrital samples[J]. Chinese Journal of Geophysics, 2010, 53(4):931-945.[王丽宁, 季建清, 孙东霞, 等. 西南天山隆起时代的河床砂岩屑磷灰石裂变径迹证据[J]. 地球物理学报, 2010, 53(4):931-945.] [31] Jolivet M, Barrier L, Dominguez S, et al. Unbalanced sediment budgets in the catchment-alluvial fan system of the Kuitun River (northern Tian Shan, China):implications for mass-balance estimates, denudation and sedimentation rates in orogenic systems[J]. Geomorphology, 2014, 214:168-182. [32] Liu Youcun, Métivier F, Gaillardet J, et al. Erosion rates deduced from seasonal mass balance along the upper Vrümqi River in Tianshan[J]. Solid Earth, 2011, 2(2):283. [33] Métivier F, Gaudemer Y. Mass transfer between eastern Tian Shan and adjacent basins (central Asia):constraints on regional tectonics and topography[J]. Geophysical Journal International, 1997, 128(1):1-17. [34] Hu Weijie, Liu Hailong, Wang Hui, et al. Analysis of the terrain effect on snow cover accumulating and melting in the Tianshan Mountains[J]. Journal of Glaciology and Geocryology, 2016, 38(5):1227-1232.[胡伟杰, 刘海隆, 王辉, 等. 地形对天山积雪冻融变化的影响分析[J]. 冰川冻土, 2016, 38(5):1227-1232.] [35] Kaser G, Osmaston H. Tropical Glaciers[M]. Cambridge, UK:Cambridge University Press, 2002. [36] Kern Z, Laszlo P. Size specific steady-state accumulation-area ratio:an improvement for equilibrium-line estimation of small paleoglaciers[J]. Quaternary Science Reviews, 2010, 29(19/20):2781-2787. [37] Meier M F, Post A S. Recent variations in mass net budgets of glaciers in western North America[C]//Variations of the Regime of Existing Glaciers, Symposium of Obergurgl 1962. International Association of Hydrological Sciences Publication, 1962, 58:63-77. [38] Nesje A. Topographical effects on the equilibrium-line altitude on glaciers[J]. GeoJournal, 1992, 27(4):383-391. [39] Porter S T. Equilibrium line altitude of late Quaternary glaciers in the Southern Alps, New Zealand[J]. Quaternary Research, 1975, 5(1):27-47. [40] Su Bo, Li Zhongqin, Zhang Mingjun, et al. A comparative study on mass balance between the continental glaciers and the temperate glaciers:taking the typical glaciers in the Tianshan Mountains and the Alps as examples[J]. Journal of Glaciology and Geocryology, 2015, 37(5):1131-1140.[苏勃, 李忠勤, 张明军, 等. 大陆型冰川与海洋型冰川物质平衡对比研究——以天山和阿尔卑斯山典型冰川为例[J]. 冰川冻土, 2015, 37(5):1131-1140.] [41] Wang Ninglian, Pu Jianchen, Liu Shiyin, et al. Study on AAR of valley glaciers in the steady state[J]. Journal of Glaciology and Geocryology, 1997, 19(2):167-172.[王宁练, 蒲健辰, 刘时银, 等. 山谷冰川稳定态时积累区面积比率研究[J]. 冰川冻土, 1997, 19(2):167-172.] [42] Aoki T. Evaluation of the accumulation area ratio (AAR) method based on mass balance data for modern glaciers[J]. Geographical Review of Japan, 1999, 72(11):763-772. [43] Gross G, Kerschner H, Patzeit G. Methodische Untersuchungen über die Schneegrenze in alpinen Gletschergebieten[J]. Zeitschrift für Gletscherkunde und Glazialgeologie, 1978, 12:223-251. [44] Meierding T C. Late Pleistocene glacial equilibrium-line in the Colorado Front Range:a comparison of methods[J]. Quaternary Research, 1982, 18(3):289-310. [45] Porter S C, Pierce K L, Hamilton T D. Late Wisconsin mountain glaciation in the western United States[C]//Late-Quaternary Environments of the United States:the Late Pleistocene. Minneapolis, Minnesota:University of Minnesota Press, 1983:71-111. [46] Clark D H, Clark M M, Gillespie A R. Debris-covered glaciers in the Sierra Nevada, California, and their implications for snowline reconstructions[J]. Quaternary Research, 1994, 41(2):139-153. [47] Zhao Jingdong, Liu Shiyin, He Yuanqing, et al. Quaternary glacial chronology of the Ateaoyinake River valley, Tianshan Mountains, China[J]. Geomorphology, 2009, 103(2):276-284. [48] Zhao Jingdong, Song Yougui, King J W, et al. Glacial geomorphology and glacial history of the Muzart River valley, Tianshan range, China[J]. Quaternary Science Reviews, 2010, 29(11/12):1453-1463. [49] Chen Jiayang. Preliminary researches on lichenometric chronology of Holocene glacial fluctuations and on other topics in the headwater of Vrümqi River, Tianshan Mountains[J]. Science in China:Series B Chemistry, Life Sciences & Earth Sciences, 1989, 32(12):1487-1500. [50] Nie Zhenyu, Pan Renyi, Li Chuanchuan, et al. Analysis of the glacial geomorphological characteristics of the last glacial in the Tianger area, Tien Shan, and their paleoclimate implications[J]. Annals of Glaciology, 2014, 55(66):52-60. [51] Cui Zhijiu, Xiong Heigang, Liu Gengnian, et al. Geomorphological processes and sedimentary characteristics of middle Tien Shan Mountains cryosphere[M]. Shijiazhuang:Hebei Science and Technology Press, 1998.[崔之久, 熊黑钢, 刘耕年, 等. 中天山冰冻圈地貌过程与沉积特征[M]. 石家庄:河北科学技术出版社, 1998.] [52] Zhou Shangzhe, Li Jijun, Zhang Shiqiang. Quaternary glaciation of the Bailang River Valley, Qilian Shan[J]. Quaternary International, 2002, 97:103-110. [53] Zheng Benxing, Wang Cunnian. A discussion on Quaternary Glaciation in the Bogda Region, Tian Shan[J]. Journal of Glaciology and Geocryology, 1983, 5(3):124-132.[郑本兴, 王存年. 天山博格达峰地区第四纪冰期探讨[J]. 冰川冻土, 1983, 5(3):124-132.] [54] Dong Zhiwen, Qin Dahe, Ren Jiawen, et al. Variations in the equilibrium line altitude of Vrümqi Glacier No.1, Tianshan Mountains, over the past 50 years[J]. Chinese Science Bulletin, 2012, 57(36):4776-4783.[董志文, 秦大河, 任贾文, 等. 近50年来天山乌鲁木齐河源1号冰川平衡线高度对气候变化的响应[J]. 科学通报, 2013, 58(9):825-832.] [55] Dyurgerov M. Glacier mass balance and regime:data of measurements and analysis[D]. Boulder CO:Institute of Arctic and Alpine Research, University of Colorado, 2002. [56] Li Xiangying, Ding Yongjian, Liu Shiyin, et al. A preliminary study of the stratigraphy profiles, pH and electrical conductivity in snowpits on the Miao'ergou flat-topped glacier in Hami and the Glacier No.51 at Haxilegen of the Kuytun River, Tianshan Mountains[J]. Journal of Glaciology and Geocryology, 2007, 29(5):710-716.[李向应, 丁永建, 刘时银, 等. 天山哈密庙尔沟平顶冰川和奎屯河哈希勒根51号冰川成冰带与雪层pH值和电导率对比研究[J]. 冰川冻土, 2007, 29(5):710-716.] [57] Wu Lihua, Li Zhongqin, Wang Puyu, et al. Sounding the Sigong River Glacier No.4 in Mt. Bogda area, the Tianshan Mountains by using ground penetrating radar and estimating the ice volume[J]. Journal of Glaciology and Geocryology, 2011, 33(2):276-282.[吴利华, 李忠勤, 王璞玉, 等. 天山博格达峰地区四工河4号冰川雷达测厚与冰储量估算[J]. 冰川冻土, 2011, 33(2):276-282.] [58] Ye Baisheng, Ding Yongjian, Liu Chaohai. Response of valley glaciers in various size and their runoff to climate change[J]. Journal of Glaciology and Geocryology, 2001, 23(2):103-110.[叶柏生, 丁永建, 刘潮海. 不同规模山谷冰川及其径流对气候变化的响应过程[J]. 冰川冻土, 2001, 23(2):103-110.] [59] Zhang Yong, Liu Shiyin, Ding Yongjian, et al. Preliminary study of mass balance on the Keqicar Baxi Glacier on the south slopes of Tianshan Mountains[J]. Journal of Glaciology and Geocryology, 2006, 28(4):477-484.[张勇, 刘时银, 丁永建, 等. 天山南坡科契卡尔巴西冰川物质平衡初步研究[J]. 冰川冻土, 2006, 28(4):477-484.] [60] Aizen E M, Aizen V B, Melack J M, et al. Precipitation and atmospheric circulation patterns at mid-latitudes of Asia[J]. International Journal of Climatology, 2001, 21(5):535-556. [61] Li Jiangfeng. Climate of Xinjiang[M]. Beijing:China Meteorological Press, 1991.[李江风. 新疆气候[M]. 北京:气象出版社, 1991.] [62] Gong Daoyi, Zhu Jinhong, Wang Shaowu. The influence of Siberian High on large-scale climate over continental Asia[J]. Plateau Meteorology, 2002, 21(1):8-14.[龚道溢, 朱锦红, 王绍武. 西伯利亚高压对亚洲大陆的气候影响分析[J]. 高原气象, 2002, 21(1):8-14.] [63] Hou Yahong, Yang Xiuqun, Li Gang. Variation features of Siberian High and relation with winter temperature in China[J]. Meteorological Science and Technology, 2007, 35(5):646-650.[侯亚红, 杨修群, 李刚. 冬季西伯利亚高压变化特征及其与中国气温的关系[J]. 气象科技, 2007, 35(5):646-650.] [64] Schiemann R, Lüthi D, Schär C. Seasonality and interannual variability of the westerly jet in the Tibetan Plateau region[J]. Journal of Climate, 2002, 22(11):2940-2957. [65] Yang Lianmei, Zhang Qingyun. Interannual variation of summer precipitation in Xinjiang and Asian subtropical westerly jet stream[J]. Journal of Applied Meteorological Science, 2008, 19(2):171-179.[杨莲梅, 张庆云. 新疆夏季降水年际变化与亚洲副热带西风急流[J]. 应用气象学报, 2008, 19(2):171-179.] [66] Wang Yongjin, Cheng Hai, Edwards R L, et al. Millennial-and orbital-scale changes in the East Asian monsoon over the past 224000 years[J]. Nature, 2008, 451:1090-1093. [67] Blunier T, Brook E J. Timing of millennial-scale climate change in Antarctica and Greenland during the Last Glacial period[J]. Science, 2001, 291(5501):109-112. [68] Shackleton N, Hall M. Oxygen and carbon isotope stratigraphy of Deep-Sea Drilling Project hole 552a:plio-pleistocene glacial history[J]. Initial Reports of the Deep Sea Drilling Project, 1984, 81:599-609. [69] Yao Tandong, Thompson L G, Shi Yafeng, et al. Climate variation since the Last Interglaciation recorded in the Guliya ice core[J]. Science in China:Series D Earth Sciences, 1997, 40(6):662-668.[姚檀栋, Thompson L G, 施雅风, 等. 古里雅冰芯中末次间冰期以来气候变化记录研究[J]. 中国科学:D辑地球科学, 1997, 27(5):447-452.] [70] Ding Yihui. Climate of China[M]. Beijing:Science Press, 2013.[丁一汇. 中国气候[M]. 北京:科学出版社, 2013.] [71] Dai Xingang, Wang Ping, Zhang Kaijing. A study on precipitation trend and fluctuation mechanism in northwestern China over the past 60 Years[J]. Acta Physica Sinica, 2013, 62(12):129201.[戴新刚, 汪萍, 张凯静. 近60年新疆降水趋势与波动机制分析[J]. 物理学报, 2013, 62(12):129201.] [72] Mangerud J, Jakobsson M, Alexanderson H, et al. Ice-dammed lakes and rerouting of the drainage of northern Eurasia during the Last Glaciation[J]. Quaternary Science Reviews, 2004, 23(11/12/13):1313-1332. [73] Siegert M J, Marsiat I. Numerical reconstructions of LGM climate across the Eurasian Arctic[J]. Quaternary Science Reviews, 2001, 20(15):1595-1605. [74] Svendsen J I, Alexanderson H, Astakhov V I, et al. Late Quaternary ice sheet history of northern Eurasia[J]. Quaternary Science Reviews, 2004, 23(11/12/13):1229-1271. [75] Hostetler S W, Bartlein P J, Clark P U, et al. Simulated influences of Lake Agassiz on the climate of central North America 11000 years ago[J]. Nature, 2000, 405(6784):334-337. [76] Krinner G, Mangerud J, Jakobsson M, et al. Enhanced ice sheet growth in Eurasia owing to adjacent ice-dammed lakes[J]. Nature, 2004, 427(6973):429-432. [77] Krinner G, Diekmann B, Colleoni F, et al. Global, regional and local scale factors determining glaciation extent in Eastern Siberia over the last 140000 years[J]. Quaternary Science Reviews, 2011, 30(7/8):821-831. [78] Lu Huayu, Zhou Yali, Mason J, et al. Late Quaternary climatic changes in northern China:new evidences from sand dune and loess records based on optically stimulated luminescence dating[J]. Quaternary Sciences, 2006, 26(6):888-894.[鹿化煜, 周亚利, Mason J, 等. 中国北方晚第四纪气候变化的沙漠与黄土记录——以光释光年代为基础的直接对比[J]. 第四纪研究, 2006, 26(6):888-894.] [79] Velichko A A, Timireva S N, Kremenetski K V, et al. West Siberian Plain as a late glacial desert[J]. Quaternary International, 2011, 237(1/2):45-53. [80] Wu Guangjian, Pan Baotian, Gao Hongshan, et al. Climatic signals in the Chinese loess record for the Last Glacial:the influence of northern high latitudes and the tropical Pacific[J]. Quaternary International, 2006, 154:128-135. [81] Yang Xiaoping, Rost K T, Lehmkuhl F, et al. The evolution of dry lands in northern China and in the Republic of Mongolia since the Last Glacial Maximum[J]. Quaternary International, 2004, 118:69-85. [82] Ye Duzheng. Meteorology of Qinghai-Xizang Plateau[M]. Beijing:Science Press, 1979.[叶笃正. 青藏高原气象学[M]. 北京:科学出版社, 1979.] [83] Liu Chaohai, Ding Liangfu. A primary calculation of temperature and precipitation in Tianshan Mountains, China[J]. Journal of Glaciology and Geocryology, 1988, 10(2):151-159.[刘潮海, 丁良福. 中国天山冰川区气温和降水的初步估算[J]. 冰川冻土, 1988, 10(2):151-159.] |
[1] | 王昀, 王旭, 廖飞佳, 王式功, 赵战成. 新疆天山山区降雨的微物理结构特征[J]. 冰川冻土, 2018, 40(4): 695-701. |
[2] | 秦艳, 丁建丽, 赵求东, 刘永强, 马勇刚, 穆艾塔尔·赛地. 2001-2015年天山山区积雪时空变化及其与温度和降水的关系[J]. 冰川冻土, 2018, 40(2): 249-260. |
[3] | 李玉平, 韩添丁, 沈永平, 蒲红铮. 天山南坡清水河与阿拉沟流域径流变化特征及其对气候变化的响应[J]. 冰川冻土, 2018, 40(1): 127-135. |
[4] | 刘友存, 焦克勤, 赵奎, 刘燕, 韩添丁, 钟宇, 沈永平, 郝永红, 叶柏生. 中国天山地区降水对全球气候变化的响应[J]. 冰川冻土, 2017, 39(4): 748-759. |
[5] | 王叙贤, 顾燕玲, 倪雪姣, 关波, 倪永清. 天山乌源1号冰川表面冰尘及底部沉积层真菌群落结构比较及其系统发育分析[J]. 冰川冻土, 2017, 39(4): 781-791. |
[6] | 张雪婷, 李雪梅, 高培, 李倩, 唐宏. 基于不同方法的中国天山山区降水形态分离研究[J]. 冰川冻土, 2017, 39(2): 235-244. |
[7] | 王璞玉, 李忠勤, 李慧林, 李开明, 徐春海. 天山冰川储量变化和面积变化关系分析研究[J]. 冰川冻土, 2017, 39(1): 9-15. |
[8] | 赵文宇, 刘海隆, 王 辉, 胡伟杰. 基于MODIS积雪产品的天山年积雪日数空间分布特征研究[J]. 冰川冻土, 2016, 38(6): 1510-1517. |
[9] | 胡伟杰, 刘海隆, 王辉, 赵文宇. 地形对天山积雪冻融变化的影响分析[J]. 冰川冻土, 2016, 38(5): 1227-1232. |
[10] | 曹光杰, 张学勤, 吴婷, 闫克超, 曹原. 末次冰期最盛期以来长江扬中段古河谷的沉积环境[J]. 冰川冻土, 2015, 37(6): 1627-1633. |
[11] | 宁凯, 王乃昂, 胡文峰, 张洵赫, 孙杰, 王旭. 巴丹吉林沙漠季节冻土特征[J]. 冰川冻土, 2015, 37(5): 1209-1216. |
[12] | 苏勃, 李忠勤, 张明军, 郭蓉, 孙美平, 车彦军, 应雪. 大陆型冰川与海洋型冰川物质平衡对比研究——以天山和阿尔卑斯山典型冰川为例[J]. 冰川冻土, 2015, 37(5): 1131-1140. |
[13] | 任艳群, 刘海隆, 包安明, 刘金平. 基于SSM/I和MODIS数据的天山山区积雪深度时空特征分析[J]. 冰川冻土, 2015, 37(5): 1178-1187. |
[14] | 陶玲, 顾燕玲, 郑晓吉, 关波, 董娟, 倪永清, 程国栋. 天山乌鲁木齐河源1号冰川融水可培养细菌生理生化特性及其系统发育[J]. 冰川冻土, 2015, 37(2): 511-521. |
[15] | 蒲红铮, 韩添丁, 李向应, 鲁承阳, 焦克勤, 王进. 天山乌鲁木齐河源1号冰川物质平衡高度变化特征及其对径流的影响[J]. 冰川冻土, 2014, 36(5): 1251-1259. |
|
©2018 冰川冻土编辑部
电话:0931-8260767 E-mail: edjgg@lzb.ac.cn 邮编:730000