冰川冻土 ›› 2018, Vol. 40 ›› Issue (4): 802-811.doi: 10.7522/j.issn.1000-0240.2018.0086
雷乐乐1,2, 谢艳丽3, 王大雁1, 陈敦1,2, 靳潇2,4
收稿日期:
2017-11-19
修回日期:
2018-01-24
出版日期:
2018-08-25
发布日期:
2018-10-08
通讯作者:
王大雁,E-mail:dywang@lzb.ac.cn.
E-mail:dywang@lzb.ac.cn
作者简介:
雷乐乐(1991-),男,河南洛阳人,2014年在内蒙古大学获学士学位,现为中国科学院西北生态环境资源研究院在读博士研究生,从事冻土力学与寒区工程研究.E-mail:leilele3917@163.com
基金资助:
LEI Lele1,2, XIE Yanli3, WANG Dayan1, CHEN Dun1,2, JIN Xiao2,4
Received:
2017-11-19
Revised:
2018-01-24
Online:
2018-08-25
Published:
2018-10-08
摘要: 冻土力学是冻土工程学的理论基础,以解决冻土工程问题为归宿。冻土力学分为冻土静力学和冻土动力学两个方面,而冻土静力学是冻土力学的重要部分。为此,对常规冻土静力学室内试验的研究进展进行了总结,系统地阐述了其在冻土的强度特性、变形特性及理论模型等方面所取得的重要研究成果,并指出研究中存在的一些不足之处。最后结合冻土静力学研究的特点及实际冻土工程建设的需要,对冻土静力学研究的未来发展进行了展望。
中图分类号:
雷乐乐, 谢艳丽, 王大雁, 陈敦, 靳潇. 冻土静力学室内试验研究进展[J]. 冰川冻土, 2018, 40(4): 802-811.
LEI Lele, XIE Yanli, WANG Dayan, CHEN Dun, JIN Xiao. Laboratory studies of frozen soil statics: recent progress and prospect[J]. JOURNAL OF GLACIOLOGY AND GEOCRYOLOGY, 2018, 40(4): 802-811.
[1] Qi Jilin, Ma Wei. State-of-art research on mechanical properties of frozen soils[J]. Rock and Soil Mechanics, 2010, 31(1):133-143.[齐吉琳, 马巍. 冻土的力学性质及研究现状[J]. 岩土力学, 2010, 31(1):133-143.] [2] Wang Renhe, Wang Xiuxi, Cui Hao. A study and application on computer control system for frozen soil experiments[J]. Journal of Experimental Mechanics, 2005, 20(2):248-252.[汪仁和, 王秀喜, 崔灏. 冻土试验微机控制系统研究与应用[J]. 实验力学, 2005, 20(2):248-252.] [3] Yu Jining. Design of low temperature triaxial testing machine and experimental study on cyclic freeze-thaw on the mechanical of silty clay[D]. Wuhan:Wuhan Insitute of Rock and Soil Mechanics, Chinese Academy of Sciences, 2007.[于基宁. 低温三轴试验机研制及粉质粘土冻融循环力学效应试验研究[D]. 武汉:中国科学院武汉岩土力学研究所, 2007.] [4] Yao Xiaoliang, Qi Jilin, Yu Fan, et al. A versatile triaxial apparatus for frozen soils[J]. Cold Regions Science and Technology, 2013, 92(10):48-54. [5] Xu Xiangtian, Wang Jiwei, Zhang Mingyi. Experimental study of the mechanical properties of frozen Helin loess[J]. Journal of Glaciology and Geocryology, 2016, 38(3):685-691.[徐湘田, 王继伟, 张明义. 冻结和林黄土力学性质的试验研究[J]. 冰川冻土, 2016, 38(3):685-691.] [6] Ma Wei, Wang Dayan, Chang Xiaoxiao. Study on stress-strain characteristics of frozen soil under different initial confining pressures after k0 consolidation[J]. Progress in Natural Science, 2004, 14(3):344-348.[马巍, 王大雁, 常小晓. 模拟k0固结后不同初始围压下冻土应力-应变特性研究[J]. 自然科学进展, 2004, 14(3):344-348.] [7] Cui Yinghui. Study of the dynamic characteristics of warm frozen soil based on permafrost dynamic direct shear apparatus[D]. Beijing:Beijing Jiaotong University, 2015.[崔颖辉. 基于冻土动荷载直剪仪的高温冻土动力特性研究[D]. 北京:北京交通大学, 2015.] [8] Guo Yan, Wang Dayan, Ma Wei, et al. Development and application of frozen hollow cylinder apparatus[J]. Journal of Harbin Institute of Technology, 2016, 48(12):114-120.[郭妍, 王大雁, 马巍, 等. 冻土空心圆柱仪的研发与应用[J]. 哈尔滨工业大学学报, 2016, 48(12):114-120.] [9] Haynes F D, Karalius J A. Effect of temperature on the strength of frozen silt:CRREL report 77-3[R]. Hanover, NH, USA:US Army Cold Regions Research and Engineering Laboratory, 1977. [10] Sayles F H. State of the art:mechanical properties of frozen soil[C]//Proceedings of the 5th International Symposium on Ground Freezing. Rotterdam, the Netherlands:A. A. Balkema Publishers, 1988:143-165. [11] Xiao Haibin. The relationship between uniaxial compressive strength and temperature and water content of artificial frozen soil[J]. Geotechnical Engineering World, 2008, 11(4):62-63.[肖海斌. 人工冻土单轴抗压强度与温度和含水率的关系[J]. 岩土工程界, 2008, 11(4):62-63.] [12] Ma Qinyong. Tensile strength, uniaxial compressive strength test on artificially frozen soils[J]. Rock and Soil Mechanics, 1996(3):76-81.[马芹永. 人工冻土单轴抗拉、抗压强度的试验研究[J]. 岩土力学, 1996(3):76-81.] [13] Yu Haolin, Xu Xueyan, Dong Jianfeng, et al. Experimental study on uniaxial compressive strength in Mohe permafrost region[J]. Heilongjiang Electric Power, 2013, 35(1):79-81.[于皓琳, 徐学燕, 董鉴峰, 等. 漠河多年冻土单轴抗压强度试验研究[J]. 黑龙江电力, 2013, 35(1):79-81.] [14] Wu Ziwang, Ma Wei, Zhang Changqing, et al. Strength characteristics of frozen sandy soil[J]. Journal of Glaciology and Geocryology, 1994, 16(1):15-20.[吴紫汪, 马巍, 张长庆, 等. 冻结砂土的强度特性[J]. 冰川冻土, 1994, 16(1):15-20.] [15] Zhao Xiaodong, Zhou Guoqing, Shang Xiangyu, et al. Deformation failure and energy properties for frozen soils with thermal gradients[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(12):2350-2354.[赵晓东, 周国庆, 商翔宇, 等. 温度梯度冻土压缩变形破坏特征及能量规律[J]. 岩土工程学报, 2012, 34(12):2350-2354.] [16] Tsytovich N A, Sumgin M I. Principles of mechanics of frozen ground[R]. Hanover, NH, USA:US Army Cold Regions Research and Engineering Laboratory, 1959. [17] Li Jialing. Analysis of uniaxial compressive strength and the basic parameters of clay soil[C]//Proceeding of the 2007 National Conference on Mine Construction. Xi'an:Xi'an Cartographic Publishing House, 2007:255-258.[李嘉玲. 黏土单轴抗压强度与土工基本参数的试验分析[C]//2007全国矿山建设学术会议. 西安:西安地图出版社, 2007:255-258.] [18] Tsytovich N A, Swinzow E, Tschebotarioff G. The mechanics of frozen ground[M]. New York:McGraw-Hill, 1975. [19] Tsytovich N A. Mechanics of frozen soil[M]. Zhang Changqing, Zhu Yuanlin, trans. Beijing:Science Press, 1985.[崔托维奇Н А. 冻土力学[M]. 张长庆, 朱元林, 译. 北京:科学出版社, 1985.] [20] Parameswaran V R. Deformation behaviour and strength of frozen sand[J]. Canadian Geotechnical Journal, 1980, 17(1):74-88. [21] Zhu Yuanlin, Carbee D L. Creep and strength behavior of frozen silt in uniaxial compression:CRREL report 87-10[R]. Hanover, NH, USA:US Army Cold Regions Research and Engineering Laboratory, 1987. [22] Bragg R A, Andersland O B. Strain rate, temperature, and sample size effects on compression and tensile properties of frozen sand[J]. Engineering Geology, 1981, 18(Suppl 1/2/3/4):35-46. [23] Chen Youliang, Wang Peng, Wang Ming, et al. Experimental study on uniaxial compressive strength of frozen clay in Shanghai[J]. Chinese Quarterly of Mechanics, 2012, 33(2):303-308.[陈有亮, 王鹏, 王明, 等. 上海冻结土单轴无侧限抗压强度试验研究[J]. 力学季刊, 2012, 33(2):303-308.] [24] Goughnour R R, Andersland O B. Mechanical properties of a sand-ice system[J]. Journal of the Soil Mechanics and Foundations Division, 1968, 94(4):923-950. [25] Chamberlain E, Groves C, Perham R. Mechanical behaviour of frozen earth materials under high pressure triaxial test conditions[J]. Geotechnique, 1972, 23(1):136-137. [26] Wu Chao, Zhang Shujuan, Zhou Zhiwei, et al. A study of the effect of confining pressure path on strength and deformation of frozen silty sand[J]. Journal of Glaciology and Geocryology, 2016, 38(6):1575-1582.[吴超, 张淑娟, 周志伟, 等. 围压路径对冻结粉质砂土变形行为及强度的影响研究[J]. 冰川冻土, 2016, 38(6):1575-1582.] [27] Ting J M, Martin R T, Ladd C C. Mechanisms of strength for frozen sand[J]. Journal of Geotechnical Engineering, 1983, 109(10):1286-1302. [28] Haynes F D, Karalius J A, Kalafut J. Strain rate effect on the strength of frozen silt:report N350[R]. Hanover, NH, USA:US Army Cold Regions Research and Engineering Laboratory, 1975. [29] Zhu Yuanlin, Carbee D L. Strain rate effect on the tensile strength of frozen silt[C]//Proceedings of the 4th International Symposium on Ground Freezing, Sapporo, Japan, 1985:153-157. [30] Chen Youliang, Wang Ming, Xu Shan, et al. Tensile and compressive strength tests on artifical frozen soft clay in Shanghai[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(7):1046-1051.[陈有亮, 王明, 徐珊, 等. 上海人工冻结软黏土抗压抗拉强度试验研究[J]. 岩土工程学报, 2009, 31(7):1046-1051.] [31] Wu Xuyang, Liang Qingguo, Niu Fujun, et al. Deformation failure mechanism in tensile test on remolded loess from Jiuzhou, Lanzhou[J]. Journal of Glaciology and Geocryology, 2017, 39(4):842-849.[吴旭阳, 梁庆国, 牛富俊, 等. 兰州九州重塑黄土的抗拉变形破坏机理[J]. 冰川冻土, 2017, 39(4):842-849.] [32] Zhu Yuanlin, Carbee D L. Tensile strength of frozen soil[J]. Journal of Glaciology and Geocryology, 1986, 8(1):15-28.[朱元林, 卡皮D L. 冻结粉砂的抗拉强度[J]. 冰川冻土, 1986, 8(1):15-28.] [33] Huang Xing, Li Dongqing, Ming Feng, et al. Experimental study of the compressive and tensile strengths of artificial frozen soil[J]. Journal of Glaciology and Geocryology, 2016, 38(5):1346-1352.[黄星, 李东庆, 明锋, 等. 冻土的单轴抗压、抗拉强度特性试验研究[J]. 冰川冻土, 2016, 38(5):1346-1352.] [34] Zhao Jingfeng. An experimental study on the relationship between tensile strength and temperature and water ratio of frozen soil[J]. Geology and Exploration, 2011, 47(6):1158-1161.[赵景峰. 冻土抗拉强度与冻温及含水率关系的试验研究[J]. 地质与勘探, 2011, 47(6):1158-1161.] [35] Shen Zhongyan, Liu Yongzhi. Application of the radial-splitting method to determining tensile strength of frozen soil[J]. Journal of Glaciology and Geocryology, 1994, 16(3):224-231.[沈忠言, 刘永智. 径向压裂法在冻土抗拉强度测定中的应用[J]. 冰川冻土, 1994, 16(3):224-231.] [36] Shen Zhongyan, Peng Wanwei, Liu Yongzhi, et al. Preliminary research on axial splitting method for determining tensile strength of frozen soil[J]. Journal of Glaciology and Geocryology, 1995, 17(1):33-39.[沈忠言, 彭万巍, 刘永智, 等. 轴向压裂法测定冻土抗拉强度初步研究[J]. 冰川冻土, 1995, 17(1):33-39.] [37] The Qinghai-Tibet Permafrost Dynamics Research Group. A preliminary study on some properties of the frozen soil of Qinghai-Tibet Highway[M]//Collected papers of Lanzhou Institute of Glaciology, Geocryology and Desert, Chinese Academy of Sciences. Beijing:Science Press, 1976:76-88.[青藏冻土力学研究组. 青藏公路冻土力学若干性质的初步研究[M]//中国科学院兰州冰川冻土沙漠研究所集刊. 北京:科学出版社, 1976:76-88.] [38] Sun Huijing. Study on numerical regression model of shear strength of frozen soil with application to frozen ground engineering[D]. Beijing:Beijing Jiaotong University, 2015.[孙会敬. 冻土抗剪强度的数值回归模型研究及其在冻土工程中的应用[D]. 北京:北京交通大学, 2015.] [39] Dong Simeng, Zheng Haijun, Xu Qiang. Study on the influence of freezing on Chengdu clay shear strength index[J]. China Water Transport, 2009, 9(4):184-185.[董思萌, 郑海君, 许强. 冻结作用对成都粘土抗剪强度指标的影响研究[J]. 中国水运, 2009, 9(4):184-185.] [40] Wu Ziwang, Ma Wei. Strength and creep of frozen soil[M]. Lanzhou:Lanzhou University Press, 1994.[吴紫汪, 马巍. 冻土强度与蠕变[M]. 兰州:兰州大学出版社, 1994.] [41] Liu Hanbing, Wang Jing, Wei Haibin, et al. Correlation of subgrade soil shear strength and plasticity index under freeze-thaw cycles[J]. Journal of Jilin University (Engineering and Technology Edition), 2011, 41(Suppl 2):149-152.[刘寒冰, 王静, 魏海斌, 等. 冻融循环下路基土抗剪强度与塑性指数相关性[J]. 吉林大学学报(工学版), 2011, 41(增刊2):149-152.] [42] He Weichao. Research on shear strength and microstructure of subgrade soil under the effect of freeze-thaw cycles[D]. Changchun:Jilin University, 2013.[何伟朝. 冻融循环作用下路基土的剪切强度及其微观结构研究[D]. 长春:吉林大学, 2013.] [43] Zhu Yuanlin, Zhang Jiayi, Peng Wanwei, et al. Constitutive relations of frozen soil in uniaxial compression[J]. Journal of Glaciology and Geocryology, 1992, 14(3):210-217.[朱元林, 张家懿, 彭万巍, 等. 冻土的单轴压缩本构关系[J]. 冰川冻土, 1992, 14(3):210-217.] [44] Ma Wei, Chang Xiaoxiao. Influence of loading and unloading on strength and deformation of frozen soil[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(5):563-566.[马巍, 常小晓. 加载卸载对人工冻结土强度与变形的影响[J]. 岩土工程学报, 2001, 23(5):563-566.] [45] Xu Xiangtian, Lai Yuanming, Zhou Zhiwei, et al. Laboratory investigation on the deformation and damage characteristics of frozen loess under triaxial cyclic and monotonic loading conditions[J]. Journal of Glaciology and Geocryology, 2014, 36(5):1184-1191.[徐湘田, 赖远明, 周志伟, 等. 循环与单调加载作用下冻结黄土的变形与损伤特性[J]. 冰川冻土, 2014, 36(5):1184-1191.] [46] Ma Wei, Wu Ziwang, Chang Xiaoxiao. Effects of consolidation process on stress-strain characters of tjaeles[J]. Rock and Soil Mechanics, 2000, 21(3):198-221.[马巍, 吴紫汪, 常小晓. 固结过程对冻土应力-应变特性的影响[J]. 岩土力学, 2000, 21(3):198-221.] [47] Ma Wei, Chang Xiaoxiao. Comparison of strength and deformation of artificially frozen soil in two testing manners[J]. Journal of Glaciology and Geocryology, 2002, 24(2):149-154.[马巍, 常小晓. 两种不同试验模式下人工冻结土强度与变形的对比分析[J]. 冰川冻土, 2002, 24(2):149-154.] [48] Ma Wei, Wang Dayan. Status quo and reflections of the deep frozen soil mechanics[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(6):1123-1130.[马巍, 王大雁. 深土冻土力学的研究现状与思考[J]. 岩土工程学报, 2012, 34(6):1123-1130.] [49] Ma Wei, Wu Ziwang. Analysis of microstructural changes in frozen sandy soil under confining pressures using scaning electronic microscope[J]. Journal of Glaciology and Geocryology, 1995, 17(2):152-158.[马巍, 吴紫汪. 围压作用下冻结砂土微结构变化的电镜分析[J]. 冰川冻土, 1995, 17(2):152-158.] [50] Wang Dayan, Ma Wei, Chang Xiaoxiao. Analyses of behavior of stress-strain of frozen Lanzhou loess subjected to k0 consolidation[J]. Cold Regions Science and Technology, 2004, 40(1/2):19-29. [51] Wang Dayan, Ma Wei, Wen Zhi, et al. Study on strength of artificially frozen soils in deep alluvium[J]. Tunnelling and Underground Space Technology, 2008, 23(4):381-388. [52] Wang Dayan, Ma Wei, Wen Zhi, et al. Stiffness of frozen soils subjected to k0 consolidation before freezing[J]. Soils and Foundations, 2007, 47(5):991-997. [53] Wang Dayan, Ma Wei, Chang Xiaoxiao, et al. Physico-mechanical properties changes of Qinghai-Tibet clay due to cyclic freezing and thawing[J]. Chinese Jounal of Rock Mechanics and Engineering, 2005, 24(23):4313-4319.[王大雁, 马巍, 常小晓, 等. 冻融循环作用对青藏粘土物理力学性质的影响[J]. 岩石力学与工程学报, 2005, 24(23):4313-4319.] [54] Wang Dayan, Ma Wei, Chang Xiaoxiao. Study of behavior of stress-strain for frozen soils subjected to k0 consolidation by unloading triaxial shear tests[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(8):1252-1256.[王大雁, 马巍, 常小晓. k0固结后卸载状态下冻土应力-应变特性研究[J]. 岩石力学与工程学报, 2004, 23(8):1252-1256.] [55] Wang Dayan, Ma Wei, Chang Xiaoxiao, et al. Study on resistance to deformation of artificially frozen soil in deep alluvium[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(4):418-421.[王大雁, 马巍, 常小晓, 等. 深部人工冻土抗变形特性研究[J]. 岩土工程学报, 2005, 27(4):418-421.] [56] Wang Dayan, Ma Wei, Chang Xiaoxiao, et al. Small-strain stiffness properties of frozen soils in deep alluvium[J]. Rock and Soil Mechanics, 2006, 27(9):1447-1451.[王大雁, 马巍, 常小晓, 等. 深部人工冻土在小应变条件下的刚度特性[J]. 岩土力学, 2006, 27(9):1447-1451.] [57] Wang Dayan, Ma Wei, Chang Xiaoxiao, et al. Study on the strength characteristics of frozen soil in artificial freezing sinking[J]. Journal of Glaciology and Geocryology, 2002, 24(2):168-172.[王大雁, 马巍, 常小晓, 等. 模拟人工冻结凿井状态下冻土强度特性研究[J]. 冰川冻土, 2002, 24(2):168-172.] [58] Wu Ziwang, Zhu Yuanlin. Effect of water on rheology of frozen soil[C]//Proceedings of the 2nd National Conference on Geocryology. Lanzhou:Gansu People's Publishing House, 1983:309-313.[吴紫汪, 朱元林. 水分对冻土流变的作用[C]//第二届全国冻土学术会议论文选集. 兰州:甘肃人民出版社, 1983:309-313.] [59] Du Haimin, Ma Wei, Zhang Shujuan, et al. Effects of strain rate and water content on uniaxial compressive characteristics of frozen soil[J]. Rock and Soil Mechanics, 2016, 37(5):1373-1379.[杜海民, 马巍, 张淑娟, 等. 应变率与含水率对冻土单轴压缩特性影响研究[J]. 岩土力学, 2016, 37(5):1373-1379.] [60] Sun Yiqiang. Experimental research on shear strength under negative temperature for silty clay[D]. Harbin:Harbin University of Sicience and Technology, 2017.[孙义强. 粉质黏土负温抗剪强度试验研究[D]. 哈尔滨:哈尔滨理工大学, 2017.] [61] Wang Chengwei, Li Dongwei. Study on triaxial shear test of deep artificial freezing clay under stress path[J]. Coal Engineering, 2013, 45(7):118-120.[汪承维, 李栋伟. 应力路径下深部人工冻结黏土三轴剪切试验研究[J]. 煤炭工程, 2013, 45(7):118-120.] [62] Zhao Xiaodong, Zhou Guoqing, Lu Guilin. Strain responses of frozen clay with thermal gradient under triaxial creep[J]. Acta Geotechnica, 2017, 12(1):183-193. [63] Zhao Xiaodong, Zhou Guoqing. Creep deformation and heterogeneous characteristics for soils with thermal gradient[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(2):390-394.[赵晓东, 周国庆. 温度梯度冻土蠕变变形规律和非均质特征[J]. 岩土工程学报, 2014, 36(2):390-394.] [64] Sheng Yu, Wu Ziwang, Zhu Yuanlin, et al. Geometric analysis on the creep of frozen soil under increasing stress using creep theories[J]. Journal of Glaciology and Geocryology, 1995, 17(Suppl 1):51-57.[盛煜, 吴紫汪, 朱元林, 等. 应用蠕变理论对冻土在增应力过程中蠕变规律的几何分析[J]. 冰川冻土, 1995, 17(增刊1):51-57.] [65] Dong Liancheng, Zhang Gong, Zhao Shuping, et al. Experimental study of the creep indexes of frozen soil[J]. Journal of Glaciology and Geocryology, 2014, 36(1):130-136.[董连成, 张公, 赵淑萍, 等. 冻土蠕变指标试验研究[J]. 冰川冻土, 2014, 36(1):130-136.] [66] Cai Cong, Ma Wei, Zhao Shuping, et al. Uniaxial tests on frozen loess and its constitutive model[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(5):879-887.[蔡聪, 马巍, 赵淑萍, 等. 冻结黄土的单轴试验及其本构模型研究[J]. 岩土工程学报, 2017, 39(5):879-887.] [67] Zhang Xiangdong, Fu Qiang. Experimental study of triaxial creep properties of frozen soil and thickness determination of flat frozen soil wall[J]. Rock and Soil Mechanics, 2011, 32(8):2261-2266.[张向东, 傅强. 冻土三轴蠕变特性试验研究及平面冻土墙厚度的确定[J]. 岩土力学, 2011, 32(8):2261-2266.] [68] Zhu Yuanlin. Studies on strength and creep behaviour of frozen soils in China[J]. Journal of Glaciology and Geocryology, 1988, 10(3):332-337.[朱元林. 我国冻土强度与蠕变研究[J]. 冰川冻土, 1988, 10(3):332-337.] [69] Liu Zengli, Zhang Xiaopeng, Li Hongsheng. A damage constitutive model for frozen soils under uniaxial compression based on CT dynamic distinguishing[J]. Rock and Soil Mechanics, 2005, 26(4):542-546.[刘增利, 张小鹏, 李洪升. 基于动态CT识别的冻土单轴压缩损伤本构模型[J]. 岩土力学, 2005, 26(4):542-546.] [70] Chen Xiangsheng. Experimental study on strength of artifically frozen soil under transient triaxial compression[J]. Mine Construction Technology, 1992(6):38-40.[陈湘生. 人工冻土瞬时三轴剪切强度特征的试验研究[J]. 建井技术, 1992(6):38-40.] [71] Fish A M. Strength of frozen soil under a combined stress state[C]//Proceedings of the 6th International Symposium on Ground Freezing. Rotterdam, the Netherlands:A. A. Balkema, 1991:135-145. [72] Ma Wei, Wu Ziwang, Zhang Changqing. Strength and yield criterion of frozen soil[J]. Journal of Glaciology and Geocryology, 1993, 15(1):319-322.[马巍, 吴紫汪, 张长庆. 冻土的强度与屈服准则[J]. 冰川冻土, 1993, 15(1):319-322.] [73] He Ping, Cheng Guodong, Zhu Yuanlin. Constitutive theories on viscoelastoplasticity and damage of frozen soil[J]. Science in China:Series D, 1999, 42(Suppl 1):38-43.[何平, 程国栋, 朱元林. 冻土粘弹塑损伤耦合本构理论[J]. 中国科学:D辑, 1999, 29(增刊1):35-39.] [74] Lai Yuanming, Cheng Hongbin, Gao Zhihua, et al. Stress-strain relationships and nonlinear Mohr strength criterion of frozen sand clay[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(8):1612-1617.[赖远明, 程红彬, 高志华, 等. 冻结砂土的应力-应变关系及非线性莫尔强度准则[J]. 岩石力学与工程学报, 2007, 26(8):1612-1617.] [75] Ding Jingkang, Lou Anjin, Xu Xueyan. Long-term shear strength of frost-thaw thansite zone[J]. Journal of Glaciology and Geocryology, 1993, 15(2):283-288.[丁靖康, 娄安金, 徐学燕. 冻融过渡带土的长期抗剪强度[J]. 冰川冻土, 1993, 15(2):283-288.] [76] Duncan J M, Byrne P, Wong K S, et al. Strength, stress-strain and bulk modulus parameters for finite element analysis of stress and movements in soil masses[J]. Journal of Consulting and Clinical Psychology, 1980, 49(4):554-567. [77] Shen Zhongyan, Peng Wanwei, Liu Yongzhi. The effect of length of specimen on the results in radial splitting test[J]. Journal of Glaciology and Geocryology, 1994, 16(4):327-332.[沈忠言, 彭万巍, 刘永智. 径压法冻土抗拉强度测定中试样长度的影响[J]. 冰川冻土, 1994, 16(4):327-332.] [78] Vyalov S S. The rheological principle of soil mechanics[M]. Du Yupei, trans. Beijing:Science Press, 1987.[维亚洛夫C C. 土力学的流变原理[M]. 杜余培, 译. 北京:科学出版社, 1987.] [79] Miao Tiande, Wei Xuexia, Zhang Changqing. Microstructure damage theory for the creep process of frozen soil[J]. Sciences in China:Series B, 1995, 25(3):309-317.[苗天德, 魏雪霞, 张长庆. 冻土蠕变过程的微结构损伤理论[J]. 中国科学:B辑, 1995, 25(3):309-317.] [80] Li Zhimin. Study on elastoplastic damage constitutive model of frozen soil based on energy dissipation theory[D]. Huainan, Anhui:Anhui University of Science and Technology, 2009.[李志敏. 基于能量耗散理论的冻土弹塑性损伤本构模型研究[D]. 安徽淮南:安徽理工大学, 2009.] [81] Li Dongwei, Wang Renhe. Study on creep constitutive model of frozen soil based on statistical damage theory[J]. Chinese Journal of Applied Mechanics, 2008, 25(1):133-136.[李栋伟, 汪仁和. 基于统计损伤理论的冻土蠕变本构模型研究[J]. 应用力学学报, 2008, 25(1):133-136.] [82] Li Dongwei, Wang Renhe, Hu Pu. Study of frozen soil creep damage-coupling constitutive function[J]. Journal of Glaciology and Geocryology, 2007, 29(3):446-449.[李栋伟, 汪仁和, 胡璞. 冻粘土蠕变损伤耦合本构关系研究[J]. 冰川冻土, 2007, 29(3):446-449.] [83] Dafalias Y F. Bounding surface plasticity (I):mathematical foundation and hypoplasticity[J]. Journal of Engineering Mechanics, 1986, 112(9):966-987. [84] Wu Wei, Kolymbas D. Numerical testing of the stability criterion for hypoplastic constitutive equations[J]. Mechanics of Materials, 1990, 9(3):245-253. [85] Wu Wei, Niemunis A. Failure criterion, flow rule and dissipation function derived from hypoplasticity[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2015, 1(2):145-163. [86] Xu Guofang, Wu Wei, Qi Jilin. A triaxial creep model for frozen soil based on hypoplasticity[J/OL]. European Journal of Environmental and Civil Engineering, 2017[2017-06-06]. http://dx.doi.org/10.1080/19648189.2017.1344145. [87] Yang Yugui, Lai Yuanming, Dong Yuanhong, et al. The strength criterion and elastoplastic constitutive model of frozen soil under high confining pressures[J]. Cold Regions Science and Technology, 2010, 60(2):154-160. [88] Li Dongwei, Fan Juhong, Wang Renhe. Research on visco-elastic-plastic creep model of artificially frozen soil under high confining pressures[J]. Cold Regions Science and Technology, 2011, 65(2):219-225. [89] Wang Songhe, Qi Jilin, Yin Zhengyu, et al. A simple rheological element based creep model for frozen soils[J]. Cold Regions Science and Technology, 2014, 106/107:47-54. [90] Cai Zhongmin, Zhu Yuanlin, Zhang Changqing. Viscoelastoplastic constitutive model of frozen soil and determination of its parameters[J]. Journal of Glaciology and Geocryology, 1990, 12(1):31-40.[蔡中民, 朱元林, 张长庆. 冻土的粘弹塑性本构模型以及材料参数的确定[J]. 冰川冻土, 1990, 12(1):31-40.] [91] Li Dongwei, Wang Renhe, Zhao Yanhui, et al. Research on parabolic yield-surface creep constitutive model of artificial frozen soil[J]. Rock and Soil Mechanics, 2007, 28(9):1943-1948.[李栋伟, 汪仁和, 赵颜辉, 等. 抛物线型屈服面人工冻土蠕变本构模型研究[J]. 岩土力学, 2007, 28(9):1943-1948.] [92] Hou Feng, Lai Yuanming, Liu Enlong, et al. A creep constitutive model for frozen soils with different contents of coarse grains[J]. Cold Regions Science and Technology, 2018, 145:119-126. [93] Den Haan E J. A compression model for non-brittle soft clays and peat[J]. Géotechnique, 1996, 46(1):1-16. [94] Liu Mengxin, Yao Xiaoliang, Qi Jilin, et al. 1D creep model for frozen soil taking account of stress history[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(5):898-903.[刘萌心, 姚晓亮, 齐吉琳, 等. 考虑应力历史的冻土一维蠕变模型[J]. 岩土工程学报, 2016, 38(5):898-903.] [95] Xu Xiangtian, Lai Yuanming, Liu Feng, et al. A study of mechanical test methods of frozen soil[J]. Journal of Glaciology and Geocryology, 2011, 33(5):1132-1138.[徐湘田, 赖远明, 刘峰, 等. 冻土中几类力学试验方法的探讨[J]. 冰川冻土, 2011, 33(5):1132-1138.] |
[1] | 何瑞霞, 金会军, 赵淑萍, 邓友生. 冻土导热系数研究现状及进展[J]. 冰川冻土, 2018, 40(1): 116-126. |
[2] | 黄星, 李东庆, 明锋, 邴慧, 彭万巍. 冻土的单轴抗压、抗拉强度特性试验研究[J]. 冰川冻土, 2016, 38(5): 1346-1352. |
[3] | 汪丁建, 唐辉明, 张雅慧, 林成远, 赵萌. 粗粒土试验与力学特性研究现状[J]. 冰川冻土, 2016, 38(4): 943-954. |
[4] | 王吉利, 陈盼, 刘金龙, 韦昌富. 软土固结系数刍议[J]. 冰川冻土, 2016, 38(4): 904-908. |
[5] | 高黎明, 张耀南, 冯起. 河西内陆河地区径流模型概述[J]. 冰川冻土, 2016, 38(1): 259-269. |
[6] | 何瑞霞, 金会军, 马富廷, 刘辅承, 肖东辉. 大兴安岭北部霍拉盆地多年冻土及寒区环境研究的最新进展[J]. 冰川冻土, 2015, 37(1): 109-117. |
[7] | 尹小娟, 宋晓谕, 蔡国英. 湿地生态系统服务估值研究进展[J]. 冰川冻土, 2014, 36(3): 759-766. |
[8] | 杨西锋, 尤哲敏, 牛富俊, 马巍. 固化剂对盐渍土物理力学性质的固化效果研究进展[J]. 冰川冻土, 2014, 36(2): 376-385. |
[9] | 宁宝英, 张志强, 何元庆. 基于文献统计的黑河流域研究重点和热点学科演变分析[J]. 冰川冻土, 2013, 35(2): 504-512. |
[10] | 伍修锟, 毛文梁, 台喜生, 张威, 刘光琇, 陈拓, 龙昊知, 张宝贵, 陈年来. 冰川前沿裸露地微生物生态学研究进展[J]. 冰川冻土, 2013, 35(1): 217-223. |
[11] | 周尚哲. 阿尔卑斯山地区第四纪冰川最新研究[J]. 冰川冻土, 2012, 34(5): 1127-1133. |
[12] | 邓振镛, 张强, 王润元, 高伟东, 徐金芳, 孙兰东, 姚晓英, 刘明春. 西北地区特色作物对气候变化响应及应对技术的研究进展[J]. 冰川冻土, 2012, 34(4): 855-862. |
[13] | 余光明, 徐建中, 任贾文. 青藏高原大气气溶胶研究进展[J]. 冰川冻土, 2012, 34(3): 609-617. |
[14] | 胡平, 伍修锟, 李师翁, 刘光琇, 张威, 杨轩. 近10 a来冻土微生物生态学研究进展[J]. 冰川冻土, 2012, 34(3): 732-739. |
[15] | 杨兴国, 秦大河, 秦翔. 冰川/积雪-大气相互作用研究进展[J]. 冰川冻土, 2012, (2): 392-402. |
|
©2018 冰川冻土编辑部
电话:0931-8260767 E-mail: edjgg@lzb.ac.cn 邮编:730000