[1] Immerzeel W W, van Beek L P H, Bierkens M F P. Climate change will affect the Asian water towers[J]. Science, 2010, 328(5984):1382-1385. [2] Liu Shiyin, Yao Xiaojun, Guo Wanqin, et al. The contemporary glaciers in China based on the Second Chinese Glacier Inventory[J]. Acta Geographica Sinica, 2015, 70(1):3-16.[刘时银, 姚晓军, 郭万钦, 等. 基于第二次冰川编目的中国冰川现状[J]. 地理学报, 2015, 70(1):3-16.] [3] Hock R. Temperature index melt modelling in mountain areas[J]. Journal of Hydrology, 2003, 282(1):104-115. [4] Wang Jian, Chen Zidan, Li Wenjun, et al. Research on spectral reflectance properties of snow using moderate resolution imaging spectroradiometer data[J]. Journal of Glaciology and Geocryology, 2000, 22(2):165-170.[王建, 陈子丹, 李文君, 等. 中分辨率成像光谱仪图像积雪反射特性的初步分析研究[J]. 冰川冻土, 2000, 22(2):165-170.] [5] Stroeve J, Box J E, Gao Feng, et al. Accuracy assessment of the MODIS 16-day albedo product for snow:Comparisons with Greenland in situ measurements[J]. Remote Sensing of Environment, 2005, 94(1):46-60. [6] Stroeve J C, Box J E, Haran T. Evaluation of the MODIS (MOD10A1) daily snow albedo product over the Greenland ice sheet[J]. Remote Sensing of Environment, 2006, 105(2):155-171. [7] He Tao, Liang Shulin, Yu Yunyue, et al. Greenland surface albedo changes in July 1981-2012 from satellite observations[J]. Environmental Research Letters, 2013, 8(4):044043. DOI:10.1088/1748-9326/8/4/044043. [8] Tedesco M, Fettweis X, van den Broeke M R, et al. The role of albedo and accumulation in the 2010 melting record in Greenland[J]. Environmental Research Letters, 2011, 6(1):014005. DOI:10.1088/1748-9326/6/1/014005. [9] Wright P, Bergin M, Dibb J, et al. Comparing MODIS daily snow albedo to spectral albedo field measurements in Central Greenland[J]. Remote Sensing of Environment, 2014, 140:118-129. [10] Wang Jie, He Xiaobo, Ye Baisheng, et al. Variations of albedo on the Dongkemadi glacier, Tanggula range[J]. Journal of Glaciology and Geocryology, 2012, 34(1):21-28.[王杰, 何晓波, 叶柏生, 等. 唐古拉山冬克玛底冰川反照率变化特征研究[J]. 冰川冻土, 2012, 34(1):21-28.] [11] Qu Bin, Ming Jing, Kang Shichang, et al. The decreasing albedo of the Zhadang glacier on western Nyainqentanglha and the role of light-absorbing impurities[J]. Atmospheric Chemistry and Physics, 2014, 14(20):11117-11128. [12] Ming Jing, Du Zhencai, Xiao Cunde, et al. Darkening of the mid-Himalaya glaciers since 2000 and the potential causes[J]. Environmental Research Letters, 2012, 7(1):014021. DOI:10.1088/1748-9326/7/1/014021. [13] Mao Ruijuan, Wu Hongbo, He Jianqiao, et al. Spatiotemporal variation of albedo of Muztagh glacier in the Kunlun mountains and its relation to dust[J]. Journal of Glaciology and Geocryology, 2013, 35(5):1133-1142.[毛瑞娟, 吴红波, 贺建桥, 等. 昆仑山木孜塔格冰川反照率变化特征及其与粉尘的关系[J]. 冰川冻土, 2013, 35(5):1133-1142.] [14] Klein A G, Stroeve J. Development and validation of a snow albedo algorithm for the MODIS instrument[J]. Annals of Glaciology, 2002, 34(1):45-52. [15] Tekeli A E, Sensoy A, Sorman A, et al. Accuracy assessment of MODIS daily snow albedo retrievals with in situ measurements in Karasu basin, Turkey[J]. Hydrological processes, 2006, 20(4):705-721. [16] Hall D K, Riggs G A. Accuracy assessment of the MODIS snow products[J]. Hydrological processes, 2007, 21(12):1534-1547. [17] Duan Jianping, Li Lun, Fang Yongjie. Seasonal spatial heterogeneity of warming rates on the Tibetan Plateau over the past 30 years[J]. Scientific Reports, 2015, 5:11725. DOI:10.1038/srep11725. [18] Warren S G, Wiscombe W J. A model for the spectral albedo of snow Ⅱ:Snow containing atmospheric aerosols[J]. Journal of the Atmospheric Sciences, 1980, 37(12):2734-2745. [19] Xu Baiqing, Cao Junji, Hansen J, et al. Black soot and the survival of Tibetan glaciers[J]. Proceedings of the National Academy of Sciences, 2009, 106(52):22114-22118. [20] Perovich D K, Grenfell T C, Light B, et al. Seasonal evolution of the albedo of mutiyear Arctic sea ice[J]. Journal of Geophysical Research, 2002, 107(C10). DOI:10.1029/2000JC000438. [21] Doherty S J, Warren S G, Grenfell T C, et al. Light-absorbing impurities in Arctic snow[J]. Atmospheric Chemistry and Physics, 2010, 10(23):11647-11680. [22] Painter T H, Deems J S, Belnap J, et al. Response of Colorado River runoff to dust radiative forcing in snow[J]. Proceedings of the National Academy of Sciences, 2010, 107(40):17125-17130. [23] Gautam R, Hsu N C, Lau W K M, et al. Satellite observations of desert dust-induced Himalayan snow darkening[J]. Geophysical Research Letters, 2013, 40(5):988-993. [24] Gong Xiaoqian, Wu Guangjian, Zhang Chenglong, et al. Dust change over the Tibetan Plateau in recent years using ice core records and satellite remote sensing data[J]. Journal of Glaciology and Geocryology, 2012, 34(2):257-266.[宫晓倩, 邬光剑, 张成龙, 等. 基于冰芯记录与遥感数据的近期青藏高原粉尘变化研究[J]. 冰川冻土, 2012, 34(2):257-266.] [25] Ming Jing, Wang Yaqiang, Du Zhencai, et al. Widespread albedo decreasing and induced melting of Himalayan snow and ice in the early 21st century[J]. Plos One, 2015, 10(6):e0126235. DOI:10.1371/journal.pone.0126235. [26] Yao Tandong, Thompson L, Yang Wei, et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings[J]. Nature Climate Change, 2012, 2(9):663-667. [27] Zong Jibiao, Ye Qinghua, Tian Lide. Recent Naimona'Nyi Glacier surface elevation changes on the Tibetan Plateau based on ICESat/GLAS, SRTM DEM and GPS measurements[J]. Chinese Science Bulletin, 2014, 59(21):2108-2118.[宗继彪, 叶庆华, 田立德. 基于ICESat/GLAS, STRM DEM和GPS观测青藏高原纳木那尼冰面高程变化(2000-2010年)[J]. 科学通报, 2014, 59(21):2108-2118.] [28] Neckel N, Kropáč ek J, Bolch T, et al. Glacier mass changes on the Tibetan Plateau 2003-2009 derived from ICESat laser altimetry measurements[J]. Environmental Research Letters, 2014, 9(1):014009. DOI:10.1088/1748-9326/9/1/014009. [29] Shi Yafeng. Concise glacier inventory of China[M]. Shanghai:Shanghai Popular Science Press, 2008. |