[1] Guo Shenglian, Liu Zhangjun, Xiong Lihua. Advances and assessment on design flood estimation methods[J]. Journal of Hydraulic Engineering, 2016, 47(3):302-314.[郭生练, 刘章君, 熊立华. 设计洪水计算方法研究进展与评价[J]. 水利学报, 2016, 47(3):302-314.] [2] Yang Hui, Song Songbai. Application of high-order L-moments to parameter estimation of Pearson Type Ⅲ distribution[J]. Journal of Hydroelectric Engineering, 2017, 36(1):42-49.[杨惠, 宋松柏. 高阶线性矩在P-Ⅲ分布参数计算中的应用[J]. 水力发电学报, 2017, 36(1):42-49.] [3] Wang Yintang, Li Lingjie, Hu Qingfang, et al. Nonstationary hydrologic frequency analysis method considering local trends[J]. Advances in Water Science, 2017, 28(3):406-414.[王银堂, 李伶杰, 胡庆芳, 等. 考虑局部趋势的非一致性水文频率分析方法[J]. 水科学进展, 2017, 28(3):406-414.] [4] Beven K, Binley A. The future of distributed models:model calibration and uncertainty prediction[J]. Hydrological Processes, 1992, 6(3):279-298. [5] Beven K, Smith P, Freer J. Comment on "hydrological forecasting uncertainty assessment:incoherence of the GLUE methodology" by Pietro Mantovan and Ezio Todini[J]. Journal of Hydrology, 2007, 338(3):315-318. [6] Wei Xiaojing, Xiong Lihua, Wan Min, et al. Application of Markov Chain Monte Carlo method based modified generalized likelihood uncertainty estimation to hydrological models[J]. Journal of Hydraulic Engineering, 2009, 40(4):464-473.[卫晓婧, 熊立华, 万民, 等. 融合马尔科夫链-蒙特卡洛算法的改进通用似然不确定性估计方法在流域水文模型中的应用[J]. 水利学报, 2009, 40(4):464-473.] [7] Lin K R, Qiang Z, Chen X H. An evaluation of impacts of DEM resolution and parameter correlation on TOPMODEL modeling uncertainty[J]. Journal of Hydrology, 2010, 395(3/4):370-383. [8] Li Z L, Shao Q X, Xu Z X, et al. Analysis of parameter uncertainty in semi-distributed hydrological models using bootstrap method:a case study of SWAT model applied to Yingluoxia watershed in northwest China[J]. Journal of Hydrology, 2010, 385(1):76-83. [9] Bouph K, Sourinphomy K. Rainfall-Runoff Simulation using Remote Sensing and GIS Tool (SWAT Model):a case study:Xebanghieng basin in Lao PDR[J]. Journal of Natural Sciences Research, 2015:98-109. [10] Shang Xiaosan, Wang Zhenlong Wang Dong. Uncertainty analysis of parameters estimation in hydrologic frequency analysis based on bayesian method:a case study of P-Ⅲ distribution[J]. Journal of Basic Science and Engineering, 2011, 19(4):554-564.[尚晓三, 王振龙, 王栋. 基于贝叶斯理论的水文频率参数估计不确定性分析——以P-Ⅲ型分布为例[J]. 应用基础与工程科学学报, 2011, 19(4):554-564.] [11] Feng Ping, Huang Kai. A study about the impacts of non-stationary characteristic on the uncertainties of parameters estimation in hydrological series[J]. Journal of Hydraulic Engineering, 2015, 46(10):1145-1154.[冯平, 黄凯. 水文序列非一致性对其参数估计不确定性影响研究[J]. 水利学报, 2015, 46(10):1145-1154.] [12] Chen Yaning, Li Zhi, Fan Yuting, et al. Research progress on the impact of climate change on water resources in the arid region of Northwest China[J]. Acta Geographica Sinica, 2014, 69(9):1295-1304.[陈亚宁, 李稚, 范煜婷, 等. 西北干旱区气候变化对水文水资源影响研究进展[J]. 地理学报, 2014, 69(9):1295-1304.] [13] Xiang Yanyun, Wang Zhicheng, Zhang Hui, et al. Study of snowmelt runoff simulation in arid regions:progress and prospect[J]. Journal of Glaciology and Geocryology, 2017, 39(4):892-901.[向燕芸, 王志成, 张辉, 等. 干旱区融雪径流模拟的研究进展与展望[J]. 冰川冻土, 2017, 39(4):892-901.] [14] Abulemite Abullikemu, Chen Chunyan, Yusup Abdulla, et al. Temporal and spatial distribution characteristics of snowmelt flood in Xinjiang from 2001 to 2012[J]. Journal of Glaciology and Geocryology, 2015, 37(1):226-232.[阿不力米提江·阿布力克木, 陈春艳, 玉素甫·阿不都拉, 等. 2001-2012年新疆融雪型洪水时空分布特征[J]. 冰川冻土, 2015, 37(1):226-232.] [15] Pettitt A N. A non-parametric approach to the change-point problem[J]. Applied Statistics, 1979, 28(2):126-135. [16] Villarini G, Serinaldi F, Smith J A, et al. On the stationarity of annual flood peaks in the continental United States during the 20th century[J]. Water Resources Research, 2009, 45:W08417. [17] Mann H B. Non-parametric test against trend[J]. Econometic, 1945, 13(3):245-259. [18] Kendall M G. Rank correlation methods[M]. London:Charles Griffin, 1975. [19] Zhang Danwu, Cong Zhentao, Ni Guangheng. Comparison of three Mann-Kendall methods based on the China's meteorological data[J]. Advances in Water Science, 2013, 24(4):490-496.[章诞武, 丛振涛, 倪广恒. 基于中国气象资料的趋势检验方法对比分析[J]. 水科学进展, 2013, 24(4):490-496.] [20] Xie Ping, Chen Guangcai, Lei Hongfu, et al. Hydrological alteration diagnosis[J]. Journal of Hydroelectric Engineering, 2010, 29(1):85-91.[谢平, 陈广才, 雷红富, 等. 水文变异诊断系统[J]. 水力发电学报, 2010, 29(1):85-91.] [21] Xie Ping, Chen Guangcai, Xia Jun. Hydrological frequency calculation principle of inconsistent annual runoff series under changing environment[J]. Engineering Journal of Wuhan University, 2005, 38(6):6-9.[谢平, 陈广才, 夏军. 变化环境下非一致性年径流序列的水文频率计算原理[J]. 武汉大学学报(工学版), 2005, 38(6):6-9.] [22] Ding Jing, Deng Yuren. Random hydrology[M]. Chengdu:Chengdu University of Science and Technology Press, 1988.[丁晶, 邓育仁. 随机水文学[M]. 成都:成都科技大学出版社, 1988.] [23] Bao Zhenxin, Liu Jiufu, Zhang Jianyun. Study on stochastic simulation annual maximum peak discharge of P-Ⅲ distribution based on the Quasi-Monte Carlo Method[J]. Journal of China Hydrology, 2009, 29(6):33-36.[鲍振鑫, 刘九夫, 张建云. 年最大洪峰流量的P-Ⅲ型分布拟蒙特卡罗随机模拟研究[J]. 水文, 2009, 29(6):33-36.] [24] Romy R, Alexandra M. A joint model for rainfall-runoff:the case of Rio Grande basin[J]. Journal of Hydrology, 2008:189-200. [25] Xiong L H, Wan M, Wei X J, et al. Indices for assessing the prediction bounds of hydrological models and application by generalized likelihood uncertainty estimation[J]. Hydrological Science Journal, 2009, 54(5):852-871. |