[1] Li Baoming. Microbial Remediation of oil Contaminated Soil[D]. Beijing:Chinese Academy of Agricultural Sciences, 2007.[李宝明, 石油污染土壤微生物修复的研究[D]. 北京:中国农业科学院, 2007.] [2] Das N, Chandran P. Microbial degradation of petroleum hydrocarbon contaminants:an overview[J]. Biotechnology research international, 2011, 2011:941810. DOI:10.4061/2011/941810. [3] Megharaj M, Ramakrishnan B, Venkateswarlu K, et al. Bioremediation approaches for organic pollutants:a critical perspective[J]. Environment International, 2011, 37(8):1362-1375. [4] Maeng J H, Sakai Y, Tani Y, et al. Isolation and characterization of a novel oxygenase that catalyzes the first step of n-alkane oxidation in Acinetobacter sp. strain M-1[J]. Journal of Bacteriology, 1996, 178(13):3695-3700. [5] Whyte L G, Smits T H M, Labbe D, et al. Gene cloning and characterization of multiple alkane hydroxylase systems in Rhodococcus strains Q15 and NRRL B-16531[J]. Applied and Environmental Microbiology, 2002, 68(12):5933-5942. [6] Van Beilen J B, Funhoff E G. Alkane hydroxylases involved in microbial alkane degradation[J]. Applied Microbiology and Biotechnology, 2007, 74(1):13-21. [7] Sajna K V, Sukumaran R K, Gottumukkala L D, et al. Crude oil biodegradation aided by biosurfactants from Pseudozyma sp. NⅡ 08165 or its culture broth[J]. Bioresource Technology, 2015, 191:133-139. [8] Zhang Wen, Li Jianbing, Huang Guohe, et al. An experimental study on the bio-surfactant-assisted remediation of crude oil and salt contaminated soils[J]. Journal of Environmental Science and Health, Part A, 2011, 46(3):306-313. [9] Bourret R B, Hess J F, Simon M I. Conserved aspartate residues and phosphorylation in signal transduction by the chemotaxis protein CheY[J]. Proceedings of the National Academy of Sciences, 1990, 87(1):41-45. [10] Lanfranconi M P, Alvarez H M, Studdert C A. A strain isolated from gas oil-contaminated soil displays chemotaxis towards gas oil and hexadecane[J]. Environmental Microbiology, 2003, 5(10):1002-1008. [11] Hassanshahian M, Emtiazi G, Kermanshahi R K, et al. Comparison of oil degrading microbial communities in sediments from the Persian Gulf and Caspian Sea[J]. Soil and Sediment Contamination, 2010, 19(3):277-291. [12] Feng Lu, Wang Wei, Cheng Jiansong, et al. Genome and proteome of long-chain alkane degrading Geobacillus thermodenitrificans NG80-2 isolated from a deep-subsurface oil reservoir[J]. Proceedings of the National Academy of Sciences, 2007, 104(13):5602-5607. [13] Guo Dongnan, Zang Shuying, Zhao Guangying. Effect of freezing and thawing cycles on soil microbial activity and organic carbon density in forest swamp wetland with various drainage afforestation years[J]. Journal of Glaciology and Geocryology, 2017, 39(1):175-184.[郭冬楠, 臧淑英, 赵光影. 冻融交替对不同年代排水造林湿地土壤微生物活性及有机碳密度的影响[J]. 冰川冻土, 2017, 39(1):175-184.] [14] Long Haozhi, Wang Yilin, Chang Sijing, et al. Diversity of crude oil-degrading bacteria and alkane hydroxylase (alkB) genes from the Qinghai-Tibet Plateau[J]. Environmental Monitoring and Assessment, 2017, 189(116):1-14. [15] Yang Ruiqi. Diversity analysis and degradation characteristics of low temperature crude oil-degrading bacteria from the soils in the Qinghai-Tibet Plateau[D]. Lanzhou:Lanzhou Jiaotong University, 2016.[杨蕊琪. 青藏高原土壤中原油降解细菌的多样性及降解特性研究[D]. 兰州:兰州交通大学, 2016.] [16] Yang Ruiqi, Xue Lingui, Chang Sijing, et al. Elevation-distribution characteristics of the crude oil degrading bacterium in the Qilian Mountains[J]. Journal of Glaciology and Geocryology, 2016, 38(3):785-793.[杨蕊琪, 薛林贵, 常思静, 等. 祁连山不同海拔低温原油降解菌群的分布特性研究[J]. 冰川冻土, 2016, 38(3):785-793.] [17] Chang Sijing, Zhang Gaosen, Chen Ximing, et al. The complete genome sequence of the cold adapted crude-oil degrader:Pedobacter steynii DX4[J]. Standards in Genomic Sciences, 2017, 12(1):45. [18] WangYilin, Ai Xue, Li Shiweng, et al. Isolation, identification and degradation characteristics of a low temperature crude oil degrading bacteria strain from the soil of Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2015, 37(2):528-537.[王艺霖, 艾雪, 李师翁, 等. 青藏高原土壤中一株低温原油降解菌的分离鉴定及其原油降解特性[J]. 冰川冻土, 2015, 37(2):528-537.] [19] Kumari B, Singh S N, Singh D P. Characterization of two biosurfactant producing strains in crude oil degradation[J]. Process Biochemistry, 2012, 47(12):2463-2471. [20] Wentzel A, Ellingsen T E, Kotlar H K, et al. Bacterial metabolism of long-chain n-alkanes[J]. Applied Microbiology and Biotechnology, 2007, 76(6):1209-1221. [21] Sabirova J S, Becker A, Lünsdorf H, et al. Transcriptional profiling of the marine oil-degrading bacterium Alcanivorax borkumensis during growth on n-alkanes[J]. FEMS Microbiology Letters, 2011, 319(2):160-168. [22] Grabherr M G, Haas B J, Yassour M, et al. Trinity:reconstructing a full-length transcriptome without a genome from RNA-Seq data[J]. Nature Biotechnology, 2011, 29(7):644. [23] Oyola S O, Otto T D, Gu Y, et al. Optimizing Illumina next-generation sequencing library preparation for extremely AT-biased genomes[J]. BMC Genomics, 2012, 13(1):1. [24] Mortazavi A, Williams B A, McCue K, et al. Mapping and quantifying mammalian transcriptomes by RNA-Seq[J]. Nature Methods, 2008, 5(7):621. [25] Andersen M R, Salazar M P, Schaap P J, et al. Comparative genomics of citric-acid-producing Aspergillus niger ATCC 1015 versus enzyme-producing CBS 513.88[J]. Genome Research, 2011, 21(6):885-897. [26] Wang Liping, Wang Wanpeng, Lai Qiliang, et al. Gene diversity of CYP153A and AlkB alkane hydroxylases in oil-degrading bacteria isolated from the Atlantic Ocean[J]. Environmental Microbiology, 2010, 12(5):1230-1242. [27] Li Liu, Liu Xueqian, Yang Wen, et al. Crystal structure of long-chain alkane monooxygenase (LadA) in complex with coenzyme FMN:unveiling the long-chain alkane hydroxylase[J]. Journal of Molecular Biology, 2008, 376(2):453-465. [28] Van Berkel W J H, Kamerbeek N M, Fraaije M W. Flavoprotein monooxygenases, a diverse class of oxidative biocatalysts[J]. Journal of Biotechnology, 2006, 124(4):670-689. [29] Bowman J S, Deming J W. Alkane hydroxylase genes in psychrophile genomes and the potential for cold active catalysis[J]. BMC Genomics, 2014, 15(1):1120. [30] Verschueren K H G, Seljée F, Rozeboom H J, et al. Crystallographic analysis of the catalytic mechanism of haloalkane dehalogenase[J]. Nature, 1993, 363(6431):693-698. [31] Mason O U, Hazen T C, Borglin S, et al. Metagenome, metatranscriptome and single-cell sequencing reveal microbial response to Deepwater Horizon oil spill[J]. The ISME Journal, 2012, 6(9):1715. [32] Peixoto R S, Vermelho A B, Rosado A S. Petroleum-degrading enzymes:bioremediation and new prospects[J]. Enzyme Research, 2011, 2011:475193. [33] Gao R, Stock A M. Biological insights from structures of two-component proteins[J]. Annual Review of Microbiology, 2009, 63:133-154. [34] Yuste L, Rojo F. Role of the crc gene in catabolic repression of the Pseudomonas putida GPo1 alkane degradation pathway[J]. Journal of Bacteriology, 2001, 183(21):6197-6206. [35] Whyte L G, Smits T H M, Labbe D, et al. Gene cloning and characterization of multiple alkane hydroxylase systems in Rhodococcus strains Q15 and NRRL B-16531[J]. Applied and Environmental Microbiology, 2002, 68(12):5933-5942. [36] Liu Yichen, Zhou Tiantian, Zhang Jian, et al. Molecular characterization of the alkB gene in the thermophilic Geobacillus sp. strain MH-1[J]. Research in microbiology, 2009, 160(8):560-566. [37] Wang Wanpeng, Shao Zongze. Enzymes and genes involved in aerobic alkane degradation[J]. Frontiers in Microbiology, 2013, 4:116. [38] Satpute S K, Banat I M, Dhakephalkar P K, et al. Biosurfactants, bioemulsifiers and exopolysaccharides from marine microorganisms[J]. Biotechnology Advances, 2010, 28(4):436-450. [39] Smits T H M, Balada S B, Witholt B, et al. Functional analysis of alkane hydroxylases from gram-negative and gram-positive bacteria[J]. Journal of Bacteriology, 2002, 184(6):1733-1742. |