[1] Stier P, Seinfeld J H, Kinne S, et al. Aerosol absorption and radiative forcing[J]. Atmospheric Chemistry and Physics, 2007, 7(19):5237-5261. [2] Mao Jietai, Li Chengcai. Observation study of aerosol radiative properties over China[J]. Acta Meteorologica Sinica, 2005, 63(5):623-635.[毛节泰, 李成才. 气溶胶辐射特性的观测研究[J]. 气象学报, 2005, 63(5):622-635.] [3] Zhang Xiaoye. Aerosol over China and their climate effect[J]. Advances in Earth Science, 2007, 22(1):12-16.[张小曳. 中国大气气溶胶及其气候效应的研究[J]. 地球科学进展, 2007, 22(1):12-16.] [4] Tang Xiaoyan, Zhang Yuanhang, Shao Min. Atmospheric enviroment chemistry[M]. Beijing:Higher Education Press, 2006:537-548.[唐孝炎, 张远航, 邵敏. 大气环境化学[M]. 北京:高等教育出版社, 2006:537-548.] [5] Wang Mingxing. Atmospheric enviroment chemistry[M]. 2nd ed. Beijing:China Meteorological Press, 1999:413-427.[王明星. 大气化学[M]. 2版. 北京:气象出版社, 1999:413-427.] [6] Zhang Chengchang, Zhou Wenxian. Atmospheric aerosol tutorial[M]. Beijing:China Meteorological Press, 1995:6-7; 185-188.[章澄昌, 周文贤. 大气气溶胶教程[M]. 北京:气象出版社, 1995:6-7; 185-188.] [7] Kreyling W G, Semmler M, M ller W. Dosimetry and toxicology of ultrafine particles[J]. Journal of Aerosol Medicine, 2004, 17(2):140-152. [8] Pope C A.What do epidemiologic findings tell us about health effects of environmental aerosols[J]. Journal of Aerosol Medicine, 2000, 13(4):335-354. [9] Zhang Kai, Li Xingjie, Yang Wei, et al. Ambient PM2.5 level and its constituent in heating period in Chengguan District, Lanzhou City and its influence on birth quality of mice[J]. Journal of Glaciology and Geocryology, 2016, 38(6):1718-1723.[张凯, 李兴杰, 杨蔚, 等. 兰州市城关区采暖期大气PM2.5成份分析及对子代小鼠的影响研究[J]. 冰川冻土, 2016, 38(6):1718-1723.] [10] Cao Junji, Xu Hongmei, Xu Qun, et al. Fine particulate matter constituents and cardiopulmonary mortality in a heavily polluted Chinese city[J]. Environmental Health Perspectives, 2012, 120(3):373-378. [11] Pitz M, Schmid O, Heinrich J, et al. Seasonal and diurnal variation of PM2.5 apparent particle density in urban air in Augsburg, Germany[J]. Environmental Science & Technology, 2008, 42(14):5087-5093. [12] Malloy Q G J, Nakao S, Li Qi, et al. Real-time aerosol density determination utilizing a modified scanning mobility particle sizer:aerosol particle mass analyzer system[J]. Aerosol Science & Technology, 2009, 43(7):673-678. [13] Lee S Y, Widiyastuti W, Tajima N, et al. Measurement of the effective density of both spherical aggregated and ordered porous aerosol particles using mobility-and mass-analyzers[J]. Aerosol Science & Technology, 2009, 43(2):136-144. [14] Hinds W C. Aerosol Technology:Properties, behavior, and measurement of airborne particles[M]. 2nd ed. New York:John Wiley & Sons, 2012:233-249. [15] Khlystov A, Stanier C, Pandis S N. An algorithm for combining electrical mobility and aerodynamic size distributions data when measuring ambient aerosol[J]. Aerosol Science & Technology, 2004, 38(S1):229-238. [16] McMurry P H, Wang Xin, Park K, et al. The relationship between mass and mobility for atmospheric particles:a new technique for measuring particle density[J]. Aerosol Science & Technology, 2002, 36(2):227-238. [17] Kostenidou E, Pathak R K, Pandis S N. An algorithm for the calculation of secondary organic aerosol density combining AMS and SMPS data[J]. Aerosol Science Technology, 2007, 41(11):1002-1010. [18] Katrib Y, Martin S T, Rudich Y, et al. Density changes of aerosol particles as a result of chemical reaction[J]. Atmospheric Chemistry & Physics, 2004, 4(5):6431-6472. [19] Spencer M T, Shields L G, Prather K A. Simultaneous measurement of the effective density and chemical composition of ambient aerosol particles[J]. Environmental Science & Technology, 2007, 41(4):1303-1309. [20] Zhang Renyi, Khalizov A F, Pagels J, et al. Variability in morphology, hygroscopicity, and optical properties of soot aerosols during atmospheric processing[J]. Proceedings of the National Academy of Sciences, 2008, 105(30):10291-10296. [21] DeCarlo P, Slowik J, Worsnop D, et al. Particle morphology and density characterization by combined mobility and aerodynamic diameter measurements. Part 1:theory[J]. Aerosol Science & Technology, 2004, 38(12):1185-1205. [22] Schmid O, Karg E, Hagen D E, et al. On the effective density of non-spherical particles as derived from combined measurements of aerodynamic and mobility equivalent size[J]. Journal of Aerosol Science, 2007, 38(4):431-443. [23] Levy M E, Zhang Renyi, Khalizov A F, et al. Measurements of submicron aerosols in Houston, Texas during the 2009 SHARP field campaign[J]. Journal of Geophysical Research, 2013, 118(18):10518-10534. [24] Shen Xiaojing, Sun Junying, Zhang Yangmei, et al. The characteristics of atmospheric aerosol particle number size distribution in Arctic Yellow River Station influenced by long-range transport of autumn air mass[J]. Journal of Glaciology and Geocryology, 2016, 38(3):604-610.[沈小静, 孙俊英, 张养梅, 等. 北极黄河站秋季气团传输影响下大气气溶胶数谱分布特征[J]. 冰川冻土, 2016, 38(3):604-610.] [25] Morawska L, Johnson G, Ristovski Z D, et al. Relation between particle mass and number for submicrometer airborne particles[J]. Atmospheric Environment, 1999, 33(13):1983-1990. [26] Zhang Guohua, Bi Xinhui, Han Binxue, et al. Measurement of aerosol effective density by single particle mass spectrometry[J]. Science in China:Series D Earth Sciences, 2016, 59(2):320-327.[张国华, 毕新慧, 韩冰雪, 等. 单颗粒气溶胶质谱测定颗粒的有效密度[J]. 中国科学:D辑地球科学, 2015, 45(12):1886-1894.] [27] Pitz M, Cyrys J, Karg E, et al. Variability of apparent particle density of an urban aerosol[J]. Environmental Science & Technology, 2003, 37(19):4336-4342. [28] Hu Min, Peng Jianfei, Sun Kang, et al. Estimation of size-resolved ambient particle density based on the measurement of aerosol number, mass, and chemical size distributions in the winter in Beijing[J]. Environmental Science & Technology, 2012, 46(18):9941-9947. [29] Park K, Cao Feng, Kittelson D B, et al. Relationship between particle mass and mobility for diesel exhaust particles[J]. Environmental Science & Technology, 2003, 37(3):577-583. [30] Geller M, Biswas S, Sioutas C. Determination of particle effective density in urban environments with a differential mobility analyzer and aerosol particle mass analyzer[J]. Aerosol Science & Technology, 2006, 40(9):709-723. [31] Lall A A, Rong Weizhi, M dler L, et al. Nanoparticle aggregate volume determination by electrical mobility analysis:test of idealized aggregate theory using particle mass analyzer measurements[J]. Journal of Aerosol Science, 2008, 39(5):403-417. [32] Jimenez J L, Bahreini R, Cocker D R, et al. New particle formation from photooxidation of diiodomethane (CH2I2)[J]. Journal of Geophysical Research, 2003, 108(D10):1-25. [33] Virtanen A, Ristim ki J, Keskinen J. Method for measuring effective density and fractal dimension of aerosol agglomerates[J]. Aerosol Science & Technology, 2004, 38(5):437-446. [34] Ristim ki J, Virtanen A, Marjam ki M, et al. On-line measurement of size distribution and effective density of submicron aerosol particles[J]. Journal of Aerosol Science, 2002, 33(11):1541-1557. [35] Hand J L, Kreidenweis S M. A new method for retrieving particle refractive index and effective density from aerosol size distribution data[J]. Aerosol Science & Technology, 2002, 36(10):1012-1026. [36] Shen Si, Jaques P A, Zhu Yifang, et al. Evaluation of the SMPS-APS system as a continuous monitor for measuring PM2.5, PM10 and coarse (PM2.5-10) concentrations[J]. Atmospheric Environment, 2015, 36(24):3939-3950. [37] Kannosto J, Virtanen A, Lemmetty M, et al. Mode resolved density of atmospheric aerosol particles[J]. Atmospheric Chemistry & Physics, 2008, 8(17):5327-5337. [38] Gao Jian, Zhou Yang, Wang Jin, et al. Inter-comparison of WPSTM-TEOMTM-MOUDITM and investigation on particle density[J]. Environmental Science, 2007, 28(9):1929-1934.[高健, 周杨, 王进, 等. WPSTM-TEOMTM-MOUDITM的对比及大气气溶胶密度研究[J]. 环境科学, 2007, 28(9):1929-1934.] [39] Yin Zi, Ye Xingnan, Jiang Shuqin, et al. Size-resolved effective density of urban aerosols in Shanghai[J]. Atmospheric Environment, 2015, 100(100):133-140. [40] Levy M E, Zhang Renyi, Zheng Jun, et al. Measurements of submicron aerosols at the California-Mexico border during the Cal-Mex 2010 field campaign[J]. Atmospheric Environment, 2013, 88(5):308-319. [41] Mcmurry P H. A review of atmospheric aerosol measurements[J]. Atmospheric Environment, 2000, 34(12/13/14):1959-1999. [42] Weingartner E, Burtscher H, Baltensperger U. Hygroscopic properties of carbon and diesel soot particles[J]. Atmospheric Environment, 1997, 31(15):2311-2327. [43] Xie Conghui, Xu Jianzhong. Study on the absorption characteristics of winter aerosol in Lanzhou:the distinction betweeen black carbon and brown carbon and a characteristics analysis[J]. Journal of Glaciology and Geocryology, 2017, 39(6):1249-1257.[谢聪慧, 徐建中. 兰州市冬季气溶胶吸光特性研究——黑碳与棕色碳的区分及特征分析[J]. 冰川冻土, 2017, 39(6):1249-1257.] [44] Kuhlbusch T A J, John A C, Fissan H. Diurnal variations of aerosol characteristics at a rural measuring site close to the Ruhr-Area, Germany[J]. Atmospheric Environment, 2001, 35(14):S13-S21. [45] Hasheminassab S, Daher N, Schauer J J, et al. Source apportionment and organic compound characterization of ambient ultrafine particulate matter (PM) in the Los Angeles Basin[J]. Atmospheric Environment, 2013, 79(7):529-539. [46] Fan Ruxia. Measurement of size-resolved density of atmospheric submicron aerosols at Shangdianzi in Beijing[D]. Beijing:Chinese Academy of Meteorological Sciences, 2016.[樊茹霞. 北京上甸子地区分粒径亚微米气溶胶密度测量研究[D]. 北京:中国气象科学研究院, 2016.] |