[1] Yang Yongming, Ju Yang, Liu Hongbin, et al. Influence of porous structure properties on mechanical performances of rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(10):2031-2038.[杨永明, 鞠杨, 刘红彬, 等. 孔隙结构特征及其对岩石力学性能的影响[J]. 岩石力学与工程学报, 2009, 28(10):2031-2038.] [2] Lu Yani, Li Xinping, Wu Xinghong. Failure modes of fractured rock masses under freeze-thaw action and load[J]. Journal of Glaciology and Geocryology, 2017, 39(2):351-357.[路亚妮, 李新平, 吴兴宏. 单轴压缩条件下裂隙岩样冻融损伤破坏模式分析[J]. 冰川冻土, 2017, 39(2):351-357.] [3] Xu Shuanhai, Li Ning, Yuan Kekuo, et al. Strength behavior of frozen fractured ice-filled rock mass and research status of slope instability[J]. Journal of Glaciology and Geocryology, 2016, 38(4):1106-1120.[徐拴海, 李宁, 袁克阔, 等. 融化作用下含冰裂隙冻岩强度特性及寒区边坡失稳研究现状[J]. 冰川冻土, 2016, 38(4):1106-1120.] [4] Park J, Hyun C U, Park H D. Changes in microstructure and physical properties of rocks caused by artificial freeze-thaw action[J]. Bulletin of Engineering Geology and the Environment, 2015, 74(2):555-565. [5] Li Jielin, Zhou Keping, Zhang Yamin, et al. Experimental study of rock porous structure damage characteristics under condition of freezing-thawing cycles based on nuclear magnetic resonance technique[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(6):1208-1214.[李杰林, 周科平, 张亚民, 等. 基于核磁共振技术的岩石孔隙结构冻融损伤试验研究[J]. 岩石力学与工程学报, 2012, 31(6):1208-1214.] [6] Li Jielin, Zhou Keping, Liu Weijie, et al. NMR research on deterioration characteristics of microscopic structure of sandstones in freeze-thaw cycles[J]. Transactions of Nonferrous Metals Society of China, 2016, 26(11):2997-3003. [7] Cai Wantong, Cen Guoping, Wang Haifu. Fracture surface fractal characteristics of alkali-slag concrete under freeze-thaw cycles[J/OL]. Advances in Materials Science and Engineering, 2017[2018-05-08]. https://doi.org/10.1155/2017/1689893. [8] Guo Yinchuan, Shen Aiqin, He Tianqin, et al. Micro-crack propagation behavior of pavement concrete subjected to coupling effect of fatigue load and freezing-thawing cycles[J]. Journal of Traffic and Transportation Engineering, 2016, 16(5):1-9.[郭寅川, 申爱琴, 何天钦, 等. 疲劳荷载和冻融循环耦合作用下路面混凝土微裂缝扩展行为[J]. 交通运输工程学报, 2016, 16(5):1-9.] [9] Yan Xidong, Liu Hongyan, Xing Chuangfeng, et al. Variability of elastic modulus in rock under freezing-thawing cycles[J]. Rock and Soil Mechanics, 2015, 36(8):2315-2322.[阎锡东, 刘红岩, 邢闯锋, 等. 冻融循环条件下岩石弹性模量变化规律研究[J]. 岩土力学, 2015, 36(8):2315-2322.] [10] Liu Quansheng, Huang Shibing, Kang Yongshui, et al. Fatigue damage model and evaluation index for rock mass under freezing-thawing cycles[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(6):1116-1127.[刘泉声, 黄诗冰, 康永水, 等. 岩体冻融疲劳损伤模型与评价指标研究[J]. 岩石力学与工程学报, 2015, 34(6):1116-1127.] [11] Liu Quansheng, Huang Shibing, Kang Yongshui, et al. A prediction model for uniaxial compressive strength of deteriorated rocks due to freeze-thaw[J]. Cold Regions Science and Technology, 2015, 120:96-107. [12] Horia M, Morihirob H. Micromechanical analysis on deterioration due to freezing and thawing in porous brittle materials[J]. International Journal of Engineering Science, 1998, 36(4):511-522. [13] Jia Hailiang, Liu Qingbing, Xiang Wei, et al. Damage evolution model of saturated sandstone under freeze-thaw cycles[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(Suppl 2):3049-3055.[贾海梁, 刘清秉, 项伟, 等. 冻融循环作用下饱和砂岩损伤扩展模型研究[J]. 岩石力学与工程学报, 2013, 32(增刊2):3049-3055.] [14] Ondrášik M, Kopecky M. Rock pore structure as main reason of rock deterioration[J]. Studia Geotechnica et Mechanica, 2014, 36(1):79-88. [15] Hallet B. Why do freezing rocks break?[J]. Science, 2006, 314(5802):1092-1093. [16] Sheng Wenxia. Physical chemistry:a key course[M]. 2nd ed. Beijing:Science Press, 2009:180-184.[沈文霞. 物理化学核心教程[M]. 2版. 北京:科学出版社, 2009:180-184.] [17] Wang Wenxing. Rock mass mechanics[M]. Changsha:Central South University Press, 2004:17-20.[王文星. 岩体力学[M]. 长沙:中南大学出版社, 2004:17-20.] [18] Guo Yao, Li Gang, Jia Chengyan, et al. Study of ultrasonic test in the measurements of mechanical properties of ice[J]. Chinese Journal of Polar Research, 2016, 28(1):152-157.[郭耀, 李刚, 贾成艳, 等. 冰力学参数的超声波测试研究[J]. 极地研究, 2016, 28(1):152-157.] [19] Li Haibo, Zhu Juyi, Guo Hekun. Methods for calculating pore radius distribution in rock from NMR T2 spectra[J]. Chinese Journal of Magnetic Resonance, 2008, 25(2):273-280.[李海波, 朱巨义, 郭和坤. 核磁共振T2谱换算孔隙半径分布方法研究[J]. 波谱学杂志, 2008, 25(2):273-280.] [20] Bayar T R, Daughney C J, Knight R J. Paramagnetic effects of iron (Ⅲ) species on nuclear magnetic relaxation of fluid protons in porous media[J]. Journal of Magnetic Resonance, 2000, 142(1):74-85. [21] Kleinberg R L. Utility of NMR T2 distributions, connection with capillary pressure, clay effect, and determination of the surface relaxivity parameter rho 2[J]. Magnetic Resonance Imaging, 1996, 14(7/8):761-767. [22] Guo Jiangfeng, Xie Ranhong, Zou Youlong. Simulation of NMR responses in sandstone and restricted diffusion[J]. Chinese Journal of Geophysics, 2016, 59(7):2703-2712.[郭江峰, 谢然红, 邹友龙. 砂岩核磁共振响应模拟及受限扩散[J]. 地球物理学报, 2016, 59(7):2703-2712.] [23] Jia Hailiang. Theoretical damage models of porous rocks and hard jointed rocks subjected to frost action and further experimental verifications[D]. Wuhan:China University of Geosciences, 2016:24-28.[贾海梁. 多孔岩石及裂隙岩体冻融损伤机制的理论模型和试验研究[D]. 武汉:中国地质大学, 2016:24-28.] [24] Cai Meifeng. Rock mechanics and engineering[M]. Beijing:Science Press, 2002:39-43.[蔡美峰. 岩石力学与工程[M]. 北京:科学出版社, 2002:39-43.] |